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Abstract 

Background  Radiotherapy resistance is the main cause of low tumor regression for locally advanced rectum 
adenocarcinoma (READ). The biomarkers correlated to radiotherapy sensitivity and potential molecular mechanisms 
have not been completely elucidated.

Methods  A mRNA expression profile and a gene expression dataset of READ (GSE35452) were acquired from The 
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differentially expressed genes (DEGs) 
between radiotherapy responder and non-responder of READ were screened out. Gene ontology (GO) analysis and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for DEGs were performed. Random survival 
forest analysis was used to identified hub genes by randomForestSRC package. Based on CIBERSORT algorithm, 
Genomics of Drug Sensitivity in Cancer (GDSC) database, Gene set variation analysis (GSVA), enrichment analysis 
(GSEA), nomogram, motif enrichment and non-coding RNA network analyses, the associations between hub genes 
and immune cell infiltration, drug sensitivity, specific signaling pathways, prognosis prediction and TF – miRNA 
regulatory and ceRNA network were investigated. The expressions of hub genes in clinical samples were displayed 
with the online Human Protein Atlas (HPA).

Results  In total, 544 up-regulated and 575 down-regulated DEGs in READ were enrolled. Among that, three hubs 
including PLAGL2, ZNF337 and ALG10 were identified. These three hub genes were significantly associated with 
tumor immune infiltration, different immune-related genes and sensitivity of chemotherapeutic drugs. Also, they 
were correlated with the expression of various disease-related genes. In addition, GSVA and GSEA analysis revealed 
that different expression levels of PLAGL2, ZNF337 and ALG10 affected various signaling pathways related to disease 
progression. A nomogram and calibration curves based on three hub genes showed excellent prognosis predictive 
performance. And then, a regulatory network of transcription factor (ZBTB6) - mRNA (PLAGL2) and a ceRNA network 
of miRNA (has-miR-133b) - lncRNA were established. Finally, the results from HPA online database demonstrated the 
protein expression levels of PLAGL2, ZNF337 and ALG10 varied widely in READ patients.

Conclusion  These findings indicated that up-regulation of PLAGL2, ZNF337 and ALG10 in READ associated with 
radiotherapy response and involved in multiple process of cellular biology in tumor. They might be potential 
predictive biomarkers for radiotherapy sensitivity and prognosis for READ.
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Background
Colorectal cancer is one of the most common 
digestive system malignancies. New epidemiological 
data demonstrates that colorectal cancer is the third 
most common cancer and the third leading cause 
of cancer death in both men and women in 2022 
globally. Among these cases, nearly one-third are 
rectum adenocarcinoma (READ) [1]. Preoperative 
chemoradiotherapy (CRT) or combined with total 
neoadjuvant chemotherapy (TNT) followed by total 
mesorectal excision is recommended as the standard 
strategy for locally advanced READ patients with T3-4, 
node-negative/positive and no distant metastasis. 
The locoregional recurrence was significantly reduced 
and decreased to 5−9% with the application of 
multidisciplinary treatment [2, 3]. However, distant 
metastasis was the major cause of treatment failure and 
the 5-year distant metastasis rate was as high as about 
30% [4, 5]. Pathological complete response (pCR) after 
neoadjuvant CRT was associated with better long-
term survival outcome, such as disease-free survival 
(DFS) and overall survival (OS). Nevertheless, the pCR 
rate was only between 15% and 20% in READ patients 
administered neoadjuvant CRT [6–8]. So far, various 
efforts have been tried to search sensitive, specific and 
accurate biomarkers to predict the response of READ 
to radiotherapy, especially the pCR status. However, 
none has been applied successfully in clinic except the 
traditional but effective prognosis prediction methods 
of tumor-node-metastasis (TNM) staging system.

Radiotherapy can cause lethal lesions to tumor cells 
by damaging DNA double-strand breaks (DSB) directly 
or by generation of free radicals and reactive oxygen 
species indirectly induced by its ionizing radiation. The 
radio-resistance of tumor cells is the major obstacle for 
radiotherapy application. Previous study had shown 
that PI3K/Akt signaling and activation of Akt1 might 
be involved in irradiation resistance by accelerating 
the repair of DNA-DSB [9, 10]. Moreover, other DNA 
damage response signaling pathways including the 
activation of DNA damage sensing, early transduction 
pathways and cell cycle arrest were associated with 
tumor radio-resistance [11]. Some pathological features 
and molecular biomarkers including DNA mutation and 
DNA methylation, gene expression profiles, proteins 
and metabolites, tumor immune microenvironment 
and several microRNAs had the potential to predict the 
efficacy of preoperative CRT [12]. However, majority of 
the biomarkers were lack of sensitivity and specificity.

Anticancer immunotherapies have revolutionized 
cancer treatment in recent years. Radiotherapy can 
enhance the effect of immune checkpoint inhibitors 
by increasing CD8 + T-cell infiltration of tumors, 
increasing the recognition of host immune system to 
tumors, increasing the clearance of antigen presenting 
cells to tumors and remodeling the tumor immune 
microenvironment [13]. Thus, the combination of 
radiotherapy and immunotherapy can convert an 
immune cold tumor to a hot tumor by boosting 
antitumor immunity. The phase III PACIFIC trial 
showed that consolidation durvalumab (an anti-
programmed death ligand-1 antibody) after concurrent 
chemoradiotherapy had robust and sustained OS and 
durable PFS benefit compared with the placebo in stage 
III non-small-cell lung cancer [14]. Similarly, CRT 
combined with immunotherapy as neoadjuvant therapy 
could obtain higher pCR rate in locally advanced READ 
[15, 16]. However, the specific reasons why irradiation 
plus immunotherapy showed better efficacy in READ 
remained unclear.

To sum up, we are still unable to identify who can 
benefit from CRT best in patients with READ. The 
molecular mechanisms of radiotherapy resistance in 
rectal cancer remain to be determined. Therefore, we 
comprehensively explored the differentially expressed 
genes (DEGs) between radiotherapy non-responder and 
responder of READ and the relationship between hub 
genes and tumor immune infiltration and the potential 
mechanisms, so as to screen out specific biomarkers 
to predict the sensitivity of radiotherapy and improve 
prognosis of READ patients treated with CRT.

Methods
Datasets and acquisition
The raw message RNA (mRNA) expression dataset of 
READ analyzed in this study was obtained from The 
Cancer Genome Atlas (TCGA) (https://​portal.​gdc.​
cancer.​gov/) database, including 10 normal group and 
167 tumor tissues. Another gene expression dataset 
was enrolled from the Gene Expression Omnibus 
(GEO) database (https://​www.​ncbi.​nlm.​nih.​gov/​geo/). 
The series Matrix File data file of GSE35452 from 
GEO was established on the annotation platform of 
GPL570. There were 46 cases in this dataset, including 
24 preoperative radiotherapy READ responders and 
22 preoperative radiotherapy non-responders. The 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
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samples were analyzed to screen DEGs. All of the data 
were available for free online.

Functional enrichment analysis of the DEGs
DEGs sets were functionally annotated through 
the Metascape database (www.​metas​cape.​org) to 
explore the functional correlations of the gene sets 
comprehensively. Gene ontology (GO) analysis and 
Kyoto Encyclopedia of  Genes and Genomes (KEGG) 
pathway analysis were performed on specific genes. 
Min overlap ≥ 3 & P ≤ 0.01 were considered statistically 
significant.

Identification of hub genes by random survival forest 
analysis
Feature selection was performed using the 
randomForestSRC package. We used a random 
survival forest algorithm to rank the importance of 
prognostic related genes (nrep = 1000, which indicated 
that the number of iterations in the Monte Carlo 
simulation was 1000). We identified genes with relative 
importance > 0.3 as final marker genes.

Analysis of immune cell infiltration on hub genes
The CIBERSORT algorithm was used to analyze 
the RNA-seq data of different subgroups of READ 
patients, to infer the relative proportions of 22 immune 
infiltrating cells, and to perform pearson correlation 
analysis on gene expression and immune cell content. 
P < 0.05 was considered statistically significant.

Drug sensitivity analysis
Based on the largest pharmacogenomics database, 
named as Genomics of Drug Sensitivity in Cancer 
(GDSC, https://​www.​cance​rrxge​ne.​org/), we used the R 
package “pRRophetic” to predict the chemosensitivity 
of each tumor sample. Half maximal inhibitory 
concentration (IC50) estimating for each specific 
chemotherapeutic drug was assessed by regression 
method. Regression and prediction accuracy were 
tested with 10 cross-validation on the GDSC training 
set. Default values ​​were chosen for all parameters, 
including ‘combat’ to remove batch effects and to 
average replicate gene expression.

Gene set variation analysis (GSVA)
GSVA ​​is a nonparametric and unsupervised method for 
evaluating enrichment of transcriptome gene set. By 
comprehensively scoring the gene set of interest, GSVA 
converts gene-level changes into pathway-level changes, 

and then judges the biological function of the sample. 
This study downloaded gene sets from the molecular 
signatures database, and the GSVA algorithm was used 
to comprehensively score each gene set, so as to evaluate 
the potential biological function changes of different 
samples.

Gene set enrichment analysis (GSEA)
GSEA (http://​www.​broad​insti​tute.​org/​gsea) was used to 
identify genes that were differentially expressed between 
high and low expression groups based on expression 
profiles of READ patients. Gene sets were filtered using 
maximum and minimum gene set sizes of 500 and 15 
genes, respectively. After 100 permutations, an enriched 
gene set was obtained based on a P < 0.05 and a false 
discovery rate (FDR) value of 0.25.

Regulatory network analysis of hub genes
This study used the R package “RcisTarget” to predict 
transcription factors (TFs). All calculations performed 
by RcisTarget were based on motifs. The normalized 
enrichment score (NES) for motifs was depended on the 
total number of motifs in the database. In addition to the 
motifs annotated by the source data, we inferred further 
annotation files based on motif similarity and gene 
sequence. The first step in estimating the overexpression 
of each motif on a gene set was to calculate the area 
under the curve (AUC) for each motif-motif set pair. This 
was calculated from the recovery curves of the gene sets 
for motif ordering. The NES for each motif was calculated 
based on the AUC distribution of all motifs in the gene 
set. We used rcistarget.hg19.motifdb.cisbpont.500 bp for 
the Gene-motif rankings database.

Genome‑wide association study (GWAS analysis)
The Gene Atlas database (http://​genea​tlas.​roslin.​ed.​ac.​
uk/) is a large database that documents associations 
between hundreds of traits and millions of variants 
using the UK Biobank cohort. These associations were 
calculated using 452,264 UK individuals in the UK 
Biobank database, covering a total of 778 phenotypes and 
30 million loci.

Validation of the protein expression levels of the hub 
genes via the human protein atlas
To further verify the protein expression levels of 
PLAGL2, ZNF337 and ALG10 in colorectal cancer and 
normal tissues, immunohistochemistry (IHC) data was 
downloaded from the Human Protein Atlas (HPA, http://​
www.​prote​inatl​as.​org). The HPA could provide IHC 
results of multiple proteins based on proteomics in both 
cancer tissues and normal tissues.

http://www.metascape.org
https://www.cancerrxgene.org/
http://www.broadinstitute.org/gsea
http://geneatlas.roslin.ed.ac.uk/
http://geneatlas.roslin.ed.ac.uk/
http://www.proteinatlas.org
http://www.proteinatlas.org
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Statistical analysis
All statistical analyses were performed using R language 
(version 3.6). Cox regression analysis was used to screen 
out prognostic genes. Survival analysis was performed 
by Kaplan-Meier method. Comparison between groups 
was performed by Wilcox test. P < 0.05 was considered 
statistically significant.

Results
Identification of DEGs of radio‑sensitive samples 
in the READ cohort and functional enrichment of DEGs
We performed DEGs analysis on the GEO dataset 
GSE35452 by limma, and the results showed that 
1,119 DEGs were differentially expressed between the 
radiotherapy responder and non-responder of READ 
based on the criteria of P < 0.05. Among that, 544 genes 
were up-regulated and 575 genes were down-regulated. 
The volcano plot and heatmap of DEGs were displayed in 
Fig. 1A and B. All of the upregulated and downregulated 
genes were demonstrated in Additional file  1: Table  S1. 
To further investigate the function and pathways of the 
DEGs, metascape enrichment analysis was used and 
the results showed that these candidate genes were 
mainly enriched in pathways such as chemical synaptic 
transmission, regulation of hormone levels, and olefinic 
compound metabolic process and so on (See Additional 
file 1:  Fig. S1). At the same time, we performed protein-
protein interaction (PPI) network analysis of DEGs by 
Cytoscape software. The results demonstrated that the 
network connections of DEGs were close and complex, 
which was shown in Additional file 1:  Fig. S2.

Random survival forest analysis of DEGs and identification 
of three hub genes ofPLAGL2, ZNF337 and ALG10
In order to further find out the core genes that affected 
rectal cancer among the DEGs, we selected the DEGs 
in the TCGA-READ cohort for random survival forest 
analysis. Genes with relative importance > 0.3 were 
identified as final markers. Finally, eight genes were 
consistent with our screening threshold, including 
KCNMA1, TMC1, ALG10, HGD, HOXD3, CDKN2D, 
PLAGL2 and ZNF337, shown as Fig.  2A and B. Among 
these eight genes, only three hub genes had statistical 
significance by Kaplan-Meier survival analysis, which 
were PLAGL2, ZNF337 and ALG10 (Fig.  2C, D and E). 
The results showed that high expression of PLAGL2, 
ZNF337 and ALG10 were significantly associated with 
better overall survival compared to low expression 
(P = 0.018, P < 0.001 and P = 0.007, respectively). 
Moreover, the expression of the three genes was 
significant higher in radiotherapy responder READ 
patients than in non-responder patients (Fig. 2F).

Exploration of the clinical predictive value of three hub 
genes based on multi‑omics studies
The tumor microenvironment is mainly composed of 
tumor-associated fibroblasts, immune cells, extracellular 
matrix, various growth factors, inflammatory factors, 
special physicochemical characteristics, and cancer 
cells themselves. Tumor microenvironment significantly 
affects the diagnosis, survival and treatment sensitivity 
of malignant tumors. By analyzing the relationship 
between the expression of hub genes and tumor immune 
infiltration, the potential molecular mechanism of 
the hub genes that affecting the progression of rectal 
cancer was further explored. The proportion of immune 

Fig. 1  Volcano plot and heatmap of differentially expressed genes (DEGs). A The volcano plot of DEGs. Red: upregulated genes; Green: 
downregulated genes; B The heatmap of DEGs between non-responder (green) and responder (orange) of READ to radiotherapy. Blue: low 
expression level; Red: high expression level
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infiltrating cells in each patient and the pearson 
correlation between immune cells were shown in Fig. 3A 
and B. The proportion of T cells CD4 memory activated, 
NK cells resting and macrophages M0 were significantly 
higher in READ patients than in the normal patients 
(Fig. 3C). PLAGL2 was significantly positively correlated 
with macrophages M0, macrophages M1, etc., and 
significantly negatively correlated with macrophages M2, 
dendritic cells resting, etc.; ZNF337 was significantly 
positively correlated with macrophages M0, etc., and 
significantly negatively correlated with macrophages 
M2, etc.; Moreover, ALG10 was significantly positively 

correlated with T cells CD4 memory resting and 
significantly negatively correlated with T cells regulatory 
(Tregs) (Fig. 3D).

Furthermore, we obtained the correlations between 
the three hub genes and different immune-related genes 
from the TISIDB database, including chemokines-
related, immunoinhibitor-related, MHC-related, 
immunostimulatory-related and receptor-related genes. 
The results showed that ALG10, ZNF337 and PLAGL2 
were positively or negatively correlated with multiple 
immune-related genes and the detail was displayed in 
Additional file 1:  Fig. S3.

Fig. 2  Random survival forest analysis of DEGs in TCGA-READ cohort. A Random survival forest analysis of DEGs. B Eight genes were identified as 
finial markers with variable relative importance > 0.3. C High expression of PLAGL2, ZNF337 D and ALG10 E were significantly associated with better 
overall survival compared to low expression by Kaplan-Meier survival analysis (P = 0.018, P < 0.001 and P = 0.007, respectively). F. The expression of 
ZNF337, PLAGL2 and ALG10 was significant higher in radiotherapy responder READ patients than non-responder patients (* represented P < 0.05)

(See figure on next page.)
Fig. 3  Composition of immune infiltrating cells in association with three hub genes in the cohort retrieved from TCGA. A: Percentage of immune 
cells between the normal group and the READ patients. Green: the normal control group; Purple: the READ group. B: Interaction analysis among 22 
different immune cells in READ patients (* represented P < 0.05, ** represented P < 0.01 and *** represented P < 0.001). C. Comparisons of immune 
cells between in the normal control group and READ tissue group (* represented P < 0.05, ** represented P < 0.01 and *** represented P < 0.001 
between the two group). D. Bubble map for the correlations between three hub genes (ALG 10, PLAGL2 and ZNF337) and tumor immune infiltration 
cells (* represented P < 0.05, ** represented P < 0.01; The bigger the circle, the closer the P - value was to zero; The redder the color, the stronger the 
positive correlation; The deeper of the purple color, the stronger the negative correlation)
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Fig. 3  (See legend on previous page.)
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It was explicit that fluorouracil-based 
chemoradiotherapy was the standard treatment 
of the locally advanced READ. We further studied 
the sensitivity of chemotherapeutic drugs between 
different expression levels of hub genes based on GDSC 
database using the R package “pRRophetic”. The results 
showed that the expression of ZNF337 and ALG10 
could affect the sensitivity of paclitaxel, metformin, 
bryostatin.1, dasatinib, gefitinib and imatinib. However, 
PLAGL2 had no effect on the IC50 of dasatinib and 
imatinib. Regrettably, the data of fluorouracil-base 
chemotherapeutic agents were absent in the GDSC 
database (See Additional file 1: Fig. S4).

Study of the relationship between three hub genes 
and disease‑related genes
The disease genes related with the tumorigenesis of 
READ ware obtained through the GeneCards database 
(https://​www.​genec​ards.​org/). The results showed the 
expressions of multiple disease-related genes were 
significant different between control group and READ 
group, which included genes of TP53, MET, MSH2, 
PTEN, PIK3CA, MSH6, KRAS, EGFR, CTNNB1, 
CDKN2A, RET, PMS2, HRAS, BRCA1 and APC (Fig. 4A). 
The pearson correlation analysis pointed out that hub 
genes of ZNF337, PLAGL2 and ALG10 were significantly 
associated with the expression of various disease-related 
genes. As shown in Fig.  4B, high expression of ALG10 
was positively related to the expression of BRCA1, APC, 
KRAS, and etc.; high expression of PLAGL2 correlated 
with higher expression of MET, MSH2, CDH1, and etc.; 
ZNF337 had a positive relationship with MET, MSH6, 
BRAF and so on.

Discussion on specific signaling mechanisms related 
to hub genes ofPLAGL2, ZNF337 and ALG10
We next analyzed the specific signaling pathways involved 
in the three hub genes, and explored the effect of candi-
date genes on the signaling pathways related to disease 
progression. GSVA results showed that high expression 
of ALG10 mainly enriched adipogenesis, UV-response-
down, apoptosis, PI3K-AKT-mTOR signaling, NOTCH, 
G2M checkpoint and other signal pathways. High expres-
sion of PLAGL2 mainly enriched signaling pathways such 
as UV response-up, MYC targets V2, oxidative phospho-
rylation and DNA-repair. Low expression of PLAGL2 
mainly enriched in apoptosis, NOTCH signaling, TGFβ 
signaling and PI3K-AKT-mTOR signaling pathways. High 
expression of ZNF337 mainly enriched signaling path-
ways such as apical junction, IL6-JAK-STAT3 signaling, 
IL2-STAT5 signaling, angiogenesis pathway and others 
(Fig. 5A, B and C). In addition, we also performed GSEA 
analysis on these genes, and the enriched pathways of 

hub genes were shown in the Fig. 5D and E F. The results 
showed that high expression of ALG10 enriched in pro-
tein export, RNA degradation, ubiquitin mediated pro-
teolysis and so on. High expression of PLAGL2 enriched 
in signaling pathways such as endocytosis, endometrial 
cancer and others. Low expression of PLAGL2 enriched 
in nitrogen metabolism. High expression of ZNF337 
enriched in pathways like homologous recombination, 
GHRN signaling and others.

Construction of nomogram and development 
of calibration curves to predict the outcome of patients 
with READ
A nomogram was constructed using the TCGA READ 
dataset based on the expression of ALG10, PLAGL2 
and ZNF337 and the clinical characteristics including 
age, gender, stage, tumor (T), lymph node (N) and 
metastasis (M) stage. The logistic regression analysis 
showed that the clinical parameters and three hub genes 
of ALG10, PLAGL2 and ZNF337 had different degrees 
of contributions in the scoring process of READ at 
different stages. By scoring the features mentioned above, 
the higher the total points, the poorer the 1-year and 
3-year survival probability (Fig.  6A). At the same time, 
the calibration curves for the probabilities of 1-year and 
3-year OS revealed that the nomogram-predicted OS was 
in good agreement with the observed OS (Fig. 6B).

Regulatory network analysis of hub genes and competitive 
endogenous RNA (ceRNA) network analysis ofPLAGL2
In the study, three hub genes of ALG10, PLAGL2 and 
ZNF337 were evaluated in the process of predicting 
relevant TFs. The analysis demonstrated that they were 
regulated by multiple TFs. Therefore, motif enrichment 
analysis was performed for these TFs (Fig.  7A). The 
results showed that the motif with the highest NES was 
annotated as cisbp_M6542 (NES was 5.96) (Fig.  7B), 
followed by cisbp_M4151 with NES of 5.94 and cisbp_
M0562 with NES of 5.92 (Fig.  7C and D). The gene 
enriched in motif of cisbp_M6542 was PLAGL2 and 
the predicted upstream TF was ZBTB6. A regulatory 
network of TF (ZBTB6)-mRNA (PLAGL2) was 
established. We displayed a fraction of enriched motifs 
and corresponding TFs for hub genes in Fig. 7E.

We obtained 25 READ-related microRNAs (miRNAs) 
from the Human MicroRNA Disease Database (HMDD) 
(http://​www.​cuilab.​cn/​hmdd). Possible miRNAs and long 
non-coding RNAs (lncRNAs) for ALG10, PLAGL2 and 
ZNF337 were predicted through miRWalk database and 
ENCORI database, respectively. First, the mRNA-miRNA 
relationship pairs related to mRNAs of the three hub 
genes were extracted from the miRWalk database and 

https://www.genecards.org/
http://www.cuilab.cn/hmdd
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a total of 1,007 miRNAs were obtained. Only mRNA-
miRNA relationship pairs that were disease-related 
miRNAs were retained. Finally, only two mRNAs and two 
miRNAs were included (Fig. 8A). Second, the interacting 
lncRNAs based on ENCORI database were predicted 
according to the two miRNAs. Finally, a total of 157 
pairs of interactions were predicted, which included 1 

miRNA and 157 lncRNAs. The results showed PLAGL2 
was regulated by has-miR-133b and the a complex 
ceRNA network of miRNA (has-miR-133b)-lncRNA was 
constructed by cytoscape software (Fig. 8B).

Fig. 4  The relationship of hub genes and the disease-related genes (* represented P < 0.05, ** represented P < 0.01 and *** represented P < 0.001). 
A The comparisons of the expression of multiple disease-related genes between the control and READ patients. B Bubble map for the pearson 
correlations between three hub genes (ALG 10, PLAGL2 and ZNF337) and disease-related genes. (The bigger the circle, the closer the P - value was to 
zero; The redder the color, the stronger the positive correlation; The deeper of the purple color, the stronger the negative correlation)
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Fig. 5  GSVA and GSEA analysis of high and low expression of ALG10, PLAGL2 and ZNF337. A GSVA of ALG10; B: GSVA of PLAGL2; C: GSVA of ZNF337; D: 
GSEA of ALG10; E: GSEA of PLAGL2; F: GSEA of ZNF337.
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GWAS analysis of hub genes
Next, the pathogenic regions of 3 hub genes in READ 
were identified by analyzing the GWAS data (Fig.  9A 
and B). The single nucleotide polymorphism (SNP) 
pathogenic regions corresponding to hub genes of 
PLAGL2, ZNF337 and ALG10 were also displayed. The 
results showed PLAGL2 and ZNF337 were located in 
the pathogenic region of chromosome 20 and ALG10 
was located in the pathogenic region of chromosome 12 
(Fig. 9C, D and E).

Validation of the expression levels of PLAGL2, ZNF337 
and ALG10 in clinical samples
IHC results of the protein expression of ZNF337, ALG10 
and PLAGL2 from HPA database were displayed in 
Fig. 10. ZNF337 was expressed at a low level in rectum 
normal tissues. There was no information of the 
expression of ZNF337 in READ on the HPA database, so 
we identified the expression of ZNF337 in colon cancer 
instead. The protein expression level of ZNF337 was 
not detected in colon cancers. ALG10 was expressed at 
a high level in rectum normal tissues and had various 
expression levels in READ patients, which was from low 
and medium to high expression. Moreover, PLAGL2 was 
expressed at a medium level in rectum normal tissues 
and also had diverse expression levels in READ patients, 
which was from not detected and low expression to 
medium and high expression. The different expression 
levels of hub genes might explain the inherent biological 
characteristics differences and individual difference in 
radiosensitivity in READ patients.

Discussion
A comprehensive understanding about the mechanism 
of radiotherapy sensitivity is the key to improve the 
outcomes of READ. Till now, a comprehensive research 
of TF-miRNA-target genes regulatory network of radio-
resistance based on clinical specimens in READ is still 
absent. Hence, we explored the biomarkers and potential 
mechanism of radio-resistance in READ patients by 
bioinformatics analyses systematically. The flowchart of 
our study was displayed in Additional file 1: Fig. S5.

In this study, the DEGs between radiotherapy 
responder and non-responder of READ patients were 
identified based on GEO dataset GSE35452 by limma. 
Totally, 544 up-regulated and 575 down-regulated 
were screened out. Functional enrichment analysis 
showed DEGs significantly enriched in multiple cancer 
biological processes and the interrelationships between 
DEGs were complex by PPI analysis. Random survival 
forest analysis of DEGs from the TCGA-READ cohort 
demonstrated eight genes accorded with the threshold, 
including KCNMA1, TMC1, ALG10, HGD, HOXD3, 
CDKN2D, PLAGL2 and ZNF337. Finally, PLAGL2, 
ZNF337 and ALG10 were significantly associated with 
the survival of READ patients and identified as hub 
genes of current study. Analysis based on exploration of 
the clinical predictive value showed PLAGL2, ZNF337 
and ALG10 were significantly associated with tumor 
immune infiltration, different immune-related genes and 
sensitivity of chemotherapeutic drugs. Moreover, these 
three hub genes were correlated with the expression of 
various disease-related genes, including BRCA1, APC, 
KRAS, MET, MSH2, CDH1, MSH6, BRAF and so on. 

Fig. 6  Nomogram for prediction of the outcome of patients with READ. A: Nomogram was constructed based on the expression of ALG10, PLAGL2 
and ZNF337 and the clinical parameters. B: Calibration curves of nomogram for predicting OS at 1-year and 3-year in the TCGA READ dataset
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Fig. 7  Regulatory network analysis of hub genes. A: the enrichment analysis of transcription factors of ALG10, PLAGL2 and ZNF337 by “RcisTarget” 
from R package; B: the motif of cisbp_M6542; C: the motif of cisbp_M4151; D: the motif of cisbp_M0562; E: part enriched motifs and corresponding 
TFs for hub genes
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GSVA and GSEA analysis indicated different expression 
levels of PLAGL2, ZNF337 and ALG10 might influence 
various signaling pathways related to disease progression, 
such as PLAGL2 affected DNA repair, oxidative 
phosphorylation, apoptosis, NOTCH signaling, TGFβ 
signaling and PI3K-AKT-mTOR signaling pathways. A 
nomogram was constructed to predict the outcomes 
of READ according to different expression of ALG10, 
PLAGL2 and ZNF337 and the clinical characteristics. The 
calibration curves showed the nomogram-predicted OS 
had a high prediction in READ patients.

Finally, regulatory network showed that PLAGL2, 
ZNF337 and ALG10 were regulated by various TFs and 
a regulatory network of TF (ZBTB6)-mRNA (PLAGL2) 
was identified. Moreover, a ceRNA network of miRNA 
(has-miR-133b)-lncRNA which regulated PLAGL2 target 
gene was constructed. GWAS analysis displayed the 
pathogenic regions of PLAGL2, ZNF337 was located in 
chromosome 20 and ALG10 was in chromosome 12. In 
addition, we further validated the expression of the three 
genes in clinical samples based on HPA online database 
and the results showed the proteins expression levels 
varied widely in READ patients, which might indicate 
and reflect the internal radiosensitivity difference 
between diverse cancer patients.
PLAGL2, named as pleiomorphic adenoma gene-

like 2, and also known as PLAG1 like zinc finger 2 and 
ZNF900, is a zinc-finer protein that recognizes DNA 
and/or RNA and associated with the tumorigenesis 

of several malignancies [17]. It had been shown that 
overexpression of PLAGL2 was involved in the process 
of carcinogenicity of ovarian cancer cells through 
modulation of lncRNA ARAP1-AS1/miR-4735-3p/
PLAGL2 axis [18]. Another research indicated PLAGL2 
contributed to the development of lung adenocarcinoma 
in mice model [19]. Also, highly-expressed PLAGL2 
could impede differentiation and expedite self-renewal 
capacity by modulating Wnt/β-catenin signaling 
pathway in neural stem cells and gliomas [20]. Moreover, 
PLAGL2 had a critical biological role in promoting the 
malignant phenotypes of gastric cancer cells through 
USP37-mediated deubiquitination of Snail protein [21]. 
Other study revealed that PLAGL2 expression was also 
associated with an intestinal epithelial stem cell signature 
through enhancing the expression of a transcriptional 
regulator of ASCL2 and activating Wnt gene expression 
in intestinal epithelial cells [22]. Besides, PLAGL2 might 
promote epithelial-mesenchymal transition and increase 
metastasis via β-catenin-dependent regulation of ZEB1 in 
colorectal cancer [23]. It was also reported that PLAGL2 
was associated with chemotherapeutic drug resistance of 
adriamycin in breast cancer by activating Wnt pathway as 
well [24]. To our knowledge, the biological characteristics 
between colon cancer and rectal cancer differed 
obviously and no study investigated the role of PLAGL2 
in the process of radio-resistance in rectal cancer.
ALG10, fully defined as asparagine-linked alpha-

1,2-glucosyltransferase, and is also known as DIE2 or 

Fig. 8  CeRNA network analysis of hub genes. A: Twenty-five miRNAs related to READ and 1,007 miRNAs related to ALG10, PLAGL2 and ZNF337 were 
identified from HMDD and miRWalk databases respectively; B: A ceRNA network of mRNA (PLAGL2)-miRNA (has-miR-133b)-lncRNA (157 in total) was 
constructed
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KCR1 or ALG10A, encodes a membrane-associated 
protein that participates in putting the third glucose 
residue to the lipid-linked oligosaccharide precursor 
for N-linked glycosylation [25]. An article published 
recently concluded that high expression of ALG10 
facilitated the glycosylation of TGFBR2, stimulated 
TGF-β pathway and thus promoted the stemness of 
colorectal cancer cells [26]. However, the role of ALG10 
in chemoradiotherapy resistance of rectal cancer had not 
been rigorously studied and discussed. ZNF337, named 
as zinc finger protein 337, encodes a zinc finger domain 
containing protein and its biological function has yet to 
be determined and the role in tumorigenesis and cancer 
progression are still unclear.

Evidence showed colorectal cancer cells had extensive 
mutational diversification and exhibited higher somatic 
mutation burdens than normal colorectal stem cells and 
individual cancer cells experienced inherited differences. 
Moreover, the responses to anticancer drugs were 

markedly different between even closely relevant cells 
in the same tumor [27]. In our study, the HPA database 
showed the expression of the hub genes differed in 
individual colorectal cancer, which was consistent with 
the above findings. In addition, some clinical trials are 
currently investigating the efficacy of the combination 
of radiotherapy and immunotherapy as neoadjuvant 
treatment before operation in locally advanced READ. 
Since the preliminary results have showed the tumor 
regression rates were apparently better in radiotherapy 
and immunotherapy combination group than the 
standard CRT strategy, where the pCR rate could reach 
to 48% in all cohort and 60% in microsatellite instability-
high cohort [15, 16]. However, the underlying synergetic 
mechanism was still uncleared. In this study, we found 
hub genes that related to the response of radiotherapy 
had significant correlations with immune infiltrating 
cells and immune-related genes, which might reveal 

Fig. 9  Results of the GWAS analysis. A: Q - Q plot of the GWAS; B: Manhattan plot of the GWAS; C: PLAGL2 was located in the pathogenic region 
of chromosome 20. D: ALG10 was located in the pathogenic region of chromosome 12. E: ZNF337 was located in the pathogenic region of 
chromosome 20
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the potential mechanism of radioimmunotherapy 
combination.

It had been demonstrated that miRNA and lncRNA 
took critical roles in the process of gene regulation and 
cancer biology [28]. MiRNAs, known as small non-
coding RNAs, could bind with mRNA and control its 
expression. The ceRNA networks, where lncRNA acted 
as miRNA to modulate gene expression, participated 
in cancer development and progression [29]. In order 
to comprehensively recognize the role and potential 
mechanism of the three hub gens on radiosensitivity 
and prognosis of READ, the miRNA-related regulatory 
network and ceRNA network were constructed in 
current study.

However, there are still some limitations and shortages 
in our research. First, the sample sizes retrieved from 
TCGA and GEO databases were small. Second, the 
results were lack of experimental validations in vivo and 
in  vitro. Despite these shortcomings, the preliminary 
study can still provide very meaningful and constructive 
findings. In the subsequent studies, we will further 
confirm the role of the hub genes of PLAGL2, ZNF337 
and ALG10 in radio-resistance of READ in series 
experiments. The effect of the overexpression and 
knockdown of PLAGL2, ZNF337 and ALG10 on cell cycle 
distribution, proliferation, colony-forming, apoptosis 
and invasiveness after irradiation will be investigated 
in human rectal cell lines and in vivo. Besides, the most 

relevant signaling pathways and TF (ZBTB6)-miRNA 
(has-miR-133b)-mRNA (PLAGL2) regulatory network 
will also be explored integrally.

Conclusion
Taken together, the DEGs and three hub genes of 
PLAGL2, ZNF337 and ALG10 were identified in 
radiotherapy responders in READ. The relationship 
between hub genes and tumor immune infiltration, 
immune-related genes, sensitivity of chemotherapeutics, 
disease-related genes of READ, enriched signaling 
pathways, TF-miRNA-mRNA and ceRNA regulatory 
networks were systematically illustrated. Otherwise, the 
prognostic nomogram containing clinicopathological 
features and hub genes was constructed and calibration 
curves was established, which could excellently 
predict the survival of READ. Hence, the preliminary 
but relatively comprehensive study provided a new 
perspective for the understanding of radiosensitivity in 
READ, and predicted potential biomarkers and molecular 
mechanism for the radiotherapy and prognosis of READ. 
Future articles in this series will go into more details 
about the effects of hub genes of PLAGL2, ZNF337 and 
ALG10 on the phenotype of rectal cancer cells after 
irradiation in  vitro and in  vivo. The potential signaling 
pathway and molecular mechanisms of hub genes related 
to radiotherapy sensitivity will also be investigated in 
depth.

Fig. 10  The protein expression levels of ZNF337, ALG10 and PLAGL2 in rectum tissues and colorectal cancers from HPA online database
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Abbreviation
READ	� Rectum adenocarcinoma
CRT​	� Chemoradiotherapy
TNT	� Total neoadjuvant chemotherapy
PCR	� Pathological complete response
DFS	� Disease-free survival
OS	� Overall survival
TNM	� Tumor-node-metastasis
DSB	� Double-strand breaks
DEGs	� Differentially expressed genes
mRNA	� Message RNA
TCGA​	� The Cancer Genome Atlas
GEO	� Gene Expression Omnibus
GO	� Gene ontology
KEGG	� Kyoto Encyclopedia of Genes and Genomes
GDSC	� Genomics of Drug Sensitivity in Cancer
GSVA	� Gene set variation analysis
GSEA	� Gene set enrichment analysis
TFs	� Transcription factors
NES	� Normalized enrichment score
AUC​	� Area under the curve
IHC	� Immunohistochemistry
HPA	� Human Protein Atlas
PPI	� Protein-protein interaction
CeRNA	� Competitive endogenous RNA
HMDD	� Human MicroRNA Disease Database
lncRNAs	� Long non-coding RNAs
SNP	� Single nucleotide polymorphism
PLAGL2	� Pleiomorphic adenoma gene-like 2
ALG10	� Asparagine-linked alpha-1,2-glucosyltransferase
ZNF337	� Zinc finger protein 337
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