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Abstract 

Background  Accurate clinical structural variant (SV) calling is essential for cancer target identification and diagno-
sis but has been historically challenging due to the lack of ground truth for clinical specimens. Meanwhile, reduced 
clinical-testing cost is the key to the widespread clinical utility.

Methods  We analyzed massive data from tumor samples of 476 patients and developed a computational framework 
for accurate and cost-effective detection of clinically-relevant SVs. In addition, standard materials and classical experi-
ments including immunohistochemistry and/or fluorescence in situ hybridization were used to validate the devel-
oped computational framework.

Results  We systematically evaluated the common algorithms for SV detection and established an expert-reviewed 
SV call set of 1,303 tumor-specific SVs with high-evidence levels. Moreover, we developed a random-forest-based 
decision model to improve the true positive of SVs. To independently validate the tailored ‘two-step’ strategy, we uti-
lized standard materials and classical experiments. The accuracy of the model was over 90% (92–99.78%) for all types 
of data.

Conclusion  Our study provides a valuable resource and an actionable guide to improve cancer-specific SV detection 
accuracy and clinical applicability.
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Background
Structural variations (SVs) are most generally defined as 
large-scale genomic changes encompassing at least 50 
base pairs, which include insertions, inversions, dele-
tions, duplications/amplifications, and translocations of 
genomic segments [1]. Previous studies have shown that 
SVs play critical roles in tumor development, progression, 
and resistance to treatment by changing gene copy num-
bers, activating oncogenes, disrupting suppressor genes, 
or creating novel gene fusions [1–3]. In addition, at least 
30% of cancers have a known pathogenic SV that can be 
used for clinical diagnosis or therapy [4–9]. For example, 
the first-generation tropomyosin receptor kinase inhibi-
tors Entrectinib and Larotrectinib, have been approved 
by the Food and Drug Administration (FDA) in the 
United States to target NTRK fusions in adult and pedi-
atric patients with solid tumors [10]. The mechanism of 
both drugs involves selectively inhibiting the abnormal 
signaling pathways driven by NTRK gene fusions, lead-
ing to tumor regression and improved patient outcomes 
(response rates > 75%) [10]. Hence, accurate detection of 
tumor-specific SVs with high- and/or multi-evidence lev-
els in cancer patients is necessary.

The advancement of next-generation sequencing 
(NGS) technologies has enabled the large-scale discov-
ery of SVs, and uncovering their relationship to cancer. 
Despite the significant advantages of whole genome/
whole exome sequencing (WGS/WES) in detecting SV 
on a genome-wide scale, their utility in clinical testing 
has been questioned mainly due to the low-cost effective-
ness and the uncertain consequences of the large number 
of variants with unknown significance. In clinical prac-
tice, only actionable mutations that are clinically-relevant 
and would benefit a specific therapy are worth detecting. 
In such cases, applying targeted panels is the preferred 
option for clinical SV detection, offering higher coverage 
of target sites and lower cost and time.

Accurately SV calling based on the target panel is a 
critical step upon which almost all downstream analysis 
and annotation processes rely. Numerous studies employ 
commonly used algorithms in detecting SVs, such as 
Delly [11], Lumpy [12], GRIDSS [13], SvABA [14], and 
Manta [15]. These algorithms provide relatively high 
accuracy calls for SVs but their efficacy varies across the 
sizes and types of SVs [16]. In addition, rare research 
focused on improving the detection accuracy of clini-
cally-relevant SVs in targeted NGS panels, mainly due to 
the lack of ground truth for clinical specimens.

In this study, based on tumor samples of 476 patients 
combined with standard materials, we evaluated the 
strengths and weaknesses of SV detection algorithms and 
developed a computational framework for accurate and 
cost-effective detection of clinically-relevant SVs. The key 

question our work mainly answers is how to best inte-
grate cancer SV targets identified by panel sequencing 
into the clinical diagnostic and treatment pathways.

Methods
Sample collection
The data of 476 cancer patients used in this study was col-
lected in different periods, which were divided into three 
main cohorts according to the time of collection and the 
type of detection. From July to November 2021, a total 
of 329 patient samples were first collected. Among these 
samples, 5 samples without any target SVs identified by 
common SV callers and confirmed by the Integrative 
Genomics Viewer (IGV) tool [17] were used to gener-
ate the simulation data and evaluate the performance of 
common SV callers. The remaining 324 patients’ data was 
used as cohort 1 to construct and validate the random-
forest decision model. For cohort 2, a total of 60 patients 
were further enrolled in December 2021, which was used 
to validate the decision model as an independent cohort. 
For cohort 3, 87 patients who underwent both panel 
sequencing and IHC and/or FISH experiments between 
January to March 2022 were enrolled to further validate 
the performance of the benchmarking framework at the 
experiment level.

Targeted next‑generation sequencing (NGS) and data 
processing
Targeted next-generation sequencing for Formalin-
Fixed and Paraffin-Embedded (FFPE) tumor tissue and 
matched peripheral blood samples was carried out on 
476 cancer patients across various cancer types, mainly 
including lung, intestine, stomach, liver, breast, ovary, 
and skin cancers. Genomic DNA was extracted from 
tumor and blood samples using the GeneRead DNA 
FFPE and DNA blood mini kit (QIAGEN, GER), respec-
tively. Targeted NGS libraries were prepared using the 
custom panel (Yucebio, China), which included high 
evidence levels of clinically-relevant SVs from 27 genes. 
Then, the libraries were sequenced on the MGISEQ plat-
form with 100  bp paired-end reads following standard 
procedures. The medium depth of coverage was 1773× 
for tumors and 878× for matched blood controls.

SOAPnuke (v1.5.6) was applied to remove sequencing 
reads with adapters, low-quality, and/or > 10% N rate. 
The remaining high-quality reads were aligned to the 
human reference genome (version hg19/GRCh37) using 
the Burrows-Wheeler Aligner program (BWA, version 
0.7.12). Common SV callers were applied to identify SVs, 
including Delly (v0.8.7), SvABA (v1.1.0), Manta (v1.6.0), 
and Lumpy (v0.2.13).
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Performance assessment of SV callers based on simulation 
data
To assess the performance of SV callers, we performed 
variant simulation on five patients’ real-sequencing data 
(which did not contain any target SVs identified by com-
mon SV callers and confirmed by the IGV tool) by Var-
Ben (v1.0). Custom SVs (Additional file 1: Table S1) were 
utilized in the generation of variant simulation data. In 
addition, we also generated five variant allele frequency 
(VAF) gradients (0.5%, 1%, 2%, 5%, and 10%) for each 
data. The remaining parameters of VarBen were specified 
as “–r ucsc.hg19.fasta –aligner bwa –alignerIndex ucsc.
hg19.fasta –seqer BGI –mindepth 100 –minmutreads 3 
–readlength 100 –p 20”. The average detection rate was 
used to evaluate the performance of SV callers and the 
student’s t-test was performed to compare the difference 
between the two groups.

Random‑forest decision model for prediction of bona fide 
SVs
To construct the random-forest decision model for the 
prediction of bona fide SVs, we first need to label SVs 
detected by the best-performance SV caller obtained in 
the previous step as either true or false positives. The 
IGV tool [17], which can provide high-performance data 
visualization and exploration on standard desktop sys-
tems, was applied to visually inspect each variant and 
determine whether it was a true or false positive. Expert 
review was processed according to the characteristics of 
soft-clip/split reads, reads number, signal strength, and 
other features of the breakpoints. At least two independ-
ent bioinformatic engineers and interpretation experts 
examined the results, marking any inconsistent SV under 
analysis as a false positive.

Based on the expert-reviewed true- or false-positive 
information of detected SVs, the random-forest algo-
rithm was performed with ten-fold cross-validation to 
construct a random-forest decision model to improve the 
accuracy of detected SVs. Initially, we performed a pre-
liminary parameter optimization by invoking the hyper-
parameter random search method over a larger range of 
hyperparameters in the training set. The hyperparam-
eters involved in the model optimization process, include 
n_estimators, max_features, max_depth, min_samples_
split, min_samples_leaf, and bootstrap. When conduct-
ing the hyperparameter randomization search, the range 
of settings for each hyperparameter is as follows: n_esti-
mators (50, 100, 150, …, and 3000, with 60 evenly spaced 
values); max_features (‘auto’ and ‘sqrt’); max_depth 
(‘None’, 10, 20, 30, …, 500, with 50 evenly spaced values); 
min_samples_split (2, 5, and 10); min_samples_leaf (1, 
2, 4, and 8); bootstrap (True and False). Then, the best 

hyperparameters of the random search were acquired, 
including n_estimators = 200, max_features = sqrt, max_
depth = 40, min_samples_split = 5, min_samples_leaf = 1, 
and bootstrap = True. Subsequently, a hyperparameter 
grid search was conducted, and the ultimate model was 
developed. The range of settings for each hyperparameter 
is as follows: n_estimators (180, 181, 182, …, 220, with 
41 evenly spaced values); features = sqrt; max_depth (30, 
31, 32, …, 50, with 21 evenly spaced values); min_sam-
ples_split (3, 4, 5, 6, and 7); min_samples_leaf = 1; boot-
strap = True. Finally, the best hyperparameters of the grid 
search were obtained, n_estimators = 186, max_fea-
tures = sqrt, max_depth = 40, min_samples_split = 6, 
min_samples_leaf = 1, and bootstrap = True.

Two cohorts involving 384 patients were utilized to 
construct and validate the random-forest decision model. 
In Cohort 1 (n = 324), all detected SVs were randomly 
divided into a training set and a testing set 1 at a 4:1 ratio. 
The training set was applied to construct the random-for-
est decision model. Testing set 1 and testing set 2 (from 
Cohort 2, n = 60) were utilized as internal and exter-
nal validation sets to assess the reliability of the model, 
respectively. To evaluate and validate the performance of 
the model, four metrics, based on the confusion matrix, 
including accuracy (Eq. 1), precision (Eq. 2), recall (Eq. 3), 
and F1 score (Eq. 4), were employed in both the training 
and two testing sets.

Confirmation by standard materials
To demonstrate the robustness of the model, we pro-
cured standard materials (Genewell Bio, China) with cus-
tom SVs (Additional file 1: Table S2). Two VAF gradients 
(1% and 2%) and five biological replicates for each VAF 
gradient were generated. These standards were generated 
by human cancer cell lines. In addition, we also procured 
mutation-free samples (Genewell Bio, China), which 
served as benchmark data when detecting SVs of stand-
ard materials. The recall metric was applied to assess the 
performance.

(1)Accuracy =
TP + TN

TP + FP + TN + FN

(2)Precision =
TP

TP + FP

(3)Recall =
TP

TP + FN

(4)F1 score = 2×
Recall × Precision

Recall + Precision
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Immunohistochemistry
Tissue blocks were cut into 4-µm-thick slides and sub-
jected to antigen retrieval using an Automatic Antigen 
Repair Instrument (LBP-5196-II, LBP Medicine Science 
& Technology, China) for 30 min and 98  °C with EDTA 
buffer. Then, the slides were stained using an Automatic 
Immunocytochemical Staining Machine (LBP, LBP 
Medicine Science & Technology, China). All slides were 
examined by two independent qualified pathologists.

Fluorescence in situ hybridization
The FISH test was performed on 4-μm-thick FFPE tis-
sue slides with RET (LBP Medicine Science & Technol-
ogy, China), ROS1 (LBP Medicine Science & Technology, 
China), and ALK (HealthCare, China) break-apart FISH 
Probes Kit according to the manufacturer’s instructions 
on StatSpin ThermoBrite Elite (S500-24, Abbott, USA). 

The fluorescence signals were examined with a fluores-
cence microscope (BX53, Olympus, Japan). At least 100 
tumor cells per specimen were scored by 2 professional 
pathologists. The gene-fusion-positive cells were defined 
as those with the separation of the green and red signals 
or the presence of an isolated 3ʹ signal (3ʹ probe of ALK 
is red, 3ʹ probes of RET and ROS1 are green). The sample 
was considered positive if the proportion of positive cells 
was greater than 15%.

Results
Overview of the framework
The current framework is mainly divided into five parts 
(as shown in Fig. 1A): (1) Screening and selection clini-
cally-relevant SVs with high evidence levels; (2) Insert 
SV events into raw sequencing data of cancer patient 
samples and generate simulated data; (3) Evaluate the 

Fig. 1  Overview of study. A Workflow of the study. B Workflow of obtaining 27 genes from the CIViC database
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performance of common SV algorithms and identify the 
optimal method for analyzing custom panel sequencing 
data; (4) Construct the random-forest decision model to 
improve the accuracy of SV detection; (5) Verify the per-
formance of the framework based on standard materials 
and classical experiments. Based on the cancer types and 
evidence levels of SVs provided by the Clinical Interpre-
tation of Variants in Cancer (CIViC) database, 27 genes 
were selected with evidence of C-level or higher, meaning 
that whose SVs had been reported to be associated with 

cancer treatment or had undergone or completed clini-
cal trials of targeted drugs (Additional file  1: Table  S3, 
Fig.  1B). A total of 61 clinically-relevant SVs on these 
genes were used for further analysis, including 4 prog-
nostic, 20 diagnostic and 37 predictive SVs according to 
their evidence levels (Additional file 1: Table S3).

Fig. 2  Performance assessment of SV callers. A The generation of SV simulation data. B The average detection rate of SV callers. C Circos 
plots exhibit the detection rates of each custom SV in SV simulation data for Delly (blue), SvABA (orange), Lumpy (green), and Manta (red). 
Each connection in the center of the circos plot represents the fusion of genes at both ends. The concentric rings proceed from outermost 
to innermost, signifying VAF values of 0.5, 1.0, 2.0, 5.0, and 10.0, respectively. The height of the barplot on each ring denotes the detection count 
of the corresponding SV
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Performance assessment of SV detection methods
Based on raw targeted sequencing data from 329 cancer 
patients enrolled from July to November 2021, common 
SV callers (Delly, SvABA, Lumpy, and Manta) were uti-
lized to detect clinically-relevant SV events. The results 
showed that five patients did not detect the target SVs, 
which was further confirmed by manual examina-
tion based on the IGV tool. Then, a read editing-based 

variant simulator VarBen was adopted to generate the 
SV simulation data by incorporating the custom-defined 
SV events into the raw sequencing data of these patients 
(Additional file 1: Table S1, Fig. 2A). In addition, five VAF 
gradients (0.5%, 1%, 2%, 5%, and 10%) for each simulation 
data were generated.

According to SV detection results, we found that when 
the mutation frequency gradients were equal to 5.0% 
and 10.0%, Delly and Lumpy achieved a higher average 

Fig. 3  Construction of the random-forest decision model for prediction of bona fide SVs. A Workflow of the random-forest decision model 
construction. B The distribution of cancer types in Cohort 1 (Up) and Cohort 2 (Down). C Confusion matrixes in the training set (left), testing set1 
(middle), and testing set2 (right). D Performance of random-forest decision model in the training set (left), testing set1 (middle), and testing set2 
(right)
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detection rate (equal to 100%) than the other two soft-
ware (Fig.  2B). However, the average detection rate of 
Lumpy dramatically decreased as VAF gradients declined 
from 2.0% to 0.5%. Delly remained the top performer 
when VAF gradients were equal to 0.5% (86.67%), 1.0% 
(100%), and 2.0% (100%). Furthermore, Delly maintained 
an average detection rate > 86% when the VAF gradients 
dropped to 0.5%. SvABA also achieved a relatively high 
average detection rate of 84.44% in the 0.5% VAF gradi-
ents but significantly lower than Delly (P = 0.0054). In 
comparison, the other two SV callers exhibited an aver-
age detection rate of less than 35%. In addition, we com-
pared the performance of the SV callers in each SV event 
and found that Delly and SvABA successfully detected 
most parts of gene fusion events in all VAF gradients 
(Fig.  2C). Especially, Delly exhibited a higher average 
detection rate in CD74-ROS1 fusions and NTPK3-ETV6 
fusions than SvABA. Taken together, Delly is utilized in 
the first step of our framework for detecting SVs in tar-
geted NGS panel data.

Random‑forest decision model can effectively improve 
the true positives
Further manual verification of the SV detection results 
reported by Delly revealed a considerable percentage of 
false positives, which prevented the further application 
of these results to clinical practice. To improve the true 
positive of SVs, we constructed a random-forest deci-
sion model based on 1131 SV events identified from 
324 cancer patient samples (Cohort 1, Additional file  1: 
Table  S4), which were further randomly divided into 
a training set (904 SVs) and a testing set (227 SVs) at a 
4:1 ratio (Fig.  3A). Several cancer types were involved 
in the patient cohort, with relatively high percentages of 
lung, intestine, stomach, and ovary cancer types (Fig. 3B, 
Additional file 1: Table S5). The number and VAFs of SV 
events varied across samples while similar distributions 

were observed across different cancer types (Additional 
file  2: Figure S1). Most of the VAFs were distributed in 
0 to 0.2 in each type of cancer. Next, according to SV 
discrimination results reported by expert review (see 
“Methods”), the random-forest decision model was suc-
cessfully constructed using the training set and extracted 
SV features. The results showed that the random-forest 
decision model correctly predicted 344 true positive 
(TP−) and 559 true negative (TN−) SVs in the training 
set, 95 TP- and 130 TN-SVs in the testing set 1, respec-
tively (Fig. 3C, Additional file 1: Table S4). An independ-
ent testing set involving 60 patients (Cohort 2, Fig.  3A, 
B) was further used and similar results were obtained (65 
TP- and 106 TN-SVs were identified, Fig. 3C, Additional 
file 1: Table S4). The overall performance of the random-
forest decision model indicated its high accuracy, high 
precision, high recall, and high F1 score of over 98.4% in 
the training and two testing sets (Fig. 3D).

Validation of the SV detection framework based 
on standard materials and experiments
In order to further verify the performance of the SV 
detection framework, the tests based on standard mate-
rials and IHC and/or FISH experiments were carried 
out. The current standard materials contained five cus-
tom SVs (Additional file 1: Table S2) with two VAF gra-
dients (1% and 2%). Five biological replicates for each 
VAF gradient were tested independently. The results 
showed that the average detection rates were 92% and 
96% of SVs when VAF gradients were equal to 1% and 
2%, respectively (Fig.  4), demonstrating the robust-
ness of the framework in standard materials. Next, 87 
tumor samples (Cohort 3) from lung cancer patients 
were collected for targeted panel sequencing and IHC 
and/or FISH experiments (see “Methods”, Fig.  5A). As 
the most common fusion genes in lung cancer, ALK, 
RET, and ROS1 were selected for analysis. Through the 

Fig. 4  Performance validation of our framework in SV detection using standard materials
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Fig. 5  Performance validation of our framework using the IHC and FISH experiments. A Experimental flow chart of IHC (left) and FISH (right). B H&E 
staining of tumor areas (left) and positive staining with ALK fusion (right). C RET fusion positives by FISH. D ROS1 fusion positives by FISH. E Recall 
metric indicating the performance of our framework in SV detection by IHC and/or FISH experiments
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comparison with IHC and/or FISH experiment results, 
the detection rate of the framework was 98.70% (76/77), 
85.71% (6/7), and 100% (3/3) for ALK, RET, and ROS1 
gene fusion, respectively (Fig. 5B–E), further suggested 
the accuracy of the SV detection framework.

Discussion
Numerous studies have reported that the detection of 
SVs in cancer patients is crucial for diagnosis and tar-
geted therapies. As noted in the literature, existing SV 
detection algorithms can provide relatively high-accuracy 
calls for SVs but their application in clinical practice is 
limited. In this study, we applied the tailored ‘two-step’ 
strategy for clinically-relevant SV detection that com-
bines an optimal SV caller and a random-forest-based 
decision model and significantly improved the accuracy 
of SV detection in clinically targeted NGS panel data. The 
robustness of the framework was verified by using stand-
ard materials and IHC and/or FISH experiments.

Generally, determining whether SV is a true or false 
positive depends on various factors, such as the charac-
teristics of soft-clip/split reads, the number of reads, and 
signal strengths of the breakpoints. When construct-
ing the features required by the random-forest decision 
model, we extracted information about features caused 
by the SV from multiple facets. These features can be 
divided into three categories, including (1) the funda-
mental character of reads within a 20 bp range upstream 
and downstream of the breakpoints, including min, max, 
etc.; (2) the information of breakpoints within simple 
repeat regions; (3) the quantity of split-reads and paired-
reads, including high-quality variant pairs (DV) and high-
quality variant junction reads (RV). Based on all extracted 
features, we successfully constructed a random-forest 
decision model. In addition, we used internal and exter-
nal variation (an independent) datasets, to further verify 
the performance of the model. The results show that the 
random-forest decision model achieves quite excellent 
prediction effects on two variation datasets.

This study still has limitations. On the one hand, as 
numerous cancer diagnosis and treatment relevance SV 
detection projects are being carried out, an increasing 
number of clinical SVs will be updated in the CIViC data-
base, potentially causing fluctuations in the genes con-
tained in the current panel. On the other hand, although 
the current framework has demonstrated high accuracy 
across multiple levels of evaluation and validation, only 
a limited number of clinical samples were employed to 
evaluate the performance of SV detection. In this study, 
we used three main ways to verify the accuracy of SV 
results: the expert-reviewed results, the use of stand-
ard materials, and the verification by IHC and/or FISH 
experiments, all of which were often missing in the public 

database. So, limited by the lack of the SV benchmark 
data, genome data from the public database is currently 
not available for our model validation. Nevertheless, the 
use of more types of datasets to verify the accuracy of our 
framework is needed in the future.

Conclusions
This study not only provides a valuable resource for clini-
cally-relevant SV re-analysis but also offers an actionable 
guide to improve cancer-specific SV detection accuracy 
and clinical applicability. Using targeted sequencing 
affords a cost-efficient alternative for cancer patients, 
particularly those in economically disadvantaged house-
holds. In addition, we hope that our work will provide 
more insights for researchers into the development of 
more SV detection accuracy methods in other gene panel 
data.
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