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Abstract 

Building Single Sample Predictors (SSPs) from gene expression profiles presents challenges, notably due to the lack 
of calibration across diverse gene expression measurement technologies. However, recent research indicates the 
viability of classifying phenotypes based on the order of expression of multiple genes. Existing SSP methods often 
rely on Top Scoring Pairs (TSP), which are platform-independent and easy to interpret through the concept of “rela-
tive expression reversals”. Nevertheless, TSP methods face limitations in classifying complex patterns involving 
comparisons of more than two gene expressions. To overcome these constraints, we introduce a novel approach 
that extends TSP rules by constructing rank-based trees capable of encompassing extensive gene-gene comparisons. 
This method is bolstered by incorporating two ensemble strategies, boosting and random forest, to mitigate the risk 
of overfitting. Our implementation of ensemble rank-based trees employs boosting with LogitBoost cost and random 
forests, addressing both binary and multi-class classification problems. In a comparative analysis across 12 cancer 
gene expression datasets, our proposed methods demonstrate superior performance over both the k-TSP classi-
fier and nearest template prediction methods. We have further refined our approach to facilitate variable selection 
and the generation of clear, precise decision rules from rank-based trees, enhancing interpretability. The cumulative 
evidence from our research underscores the significant potential of ensemble rank-based trees in advancing disease 
classification via gene expression data, offering a robust, interpretable, and scalable solution. Our software is available 
at https://​CRAN.R-​proje​ct.​org/​packa​ge=​rankt​reeEn​semble.
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Introduction
The heterogeneity of cancers necessitates the precise 
classification of patients into correct cancer subtypes for 
both prognosis and effective treatment. In the past two 
decades, the utilization of gene expression profiles has 
increasingly demonstrated success in identifying cancer 
subtypes [1–5]. Numerous studies have highlighted the 
potential of using gene expression profiles for cancer tis-
sue classification, leveraging both statistical and machine 
learning models. However, these models often encounter 
challenges in data transformation, normalization, and 
management of batch effects, which can significantly 
impact their performance [6–9]. A notable issue is “test 
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set bias”, where predictions for an individual patient vary 
depending on the patient sample group used in the nor-
malization process, rather than reflecting the patient’s 
unique characteristics [10].

An emerging alternative for single sample classification 
is the Single Sample Predictor (SSP) approach [11–15]. 
This method offers significant advantages, such as the 
ability to utilize samples from diverse gene expression 
platforms without the need for calibration. SSPs ena-
ble personalized predictions by focusing on the unique 
attributes and contexts of individual samples, rather than 
relying on aggregated or generalized trends from larger 
datasets [16, 17]. Consequently, SSP methods are promis-
ing for developing precise and robust classification rules 
that are effective across various studies and platforms.

Typically, SSP methods utilize either nearest centroids 
methods [11, 12] or rank statistics of gene pairs [18, 19], 
the latter often being referred to as Top Scoring Pairs 
(TSP) based methods [20, 21]. Centroid-based methods 
classify samples based on proximity to the nearest cen-
troid in feature space, typically using distance metrics 
like Euclidean distance. Although intuitive and effective 
in cases with distinct class centroids, they may underper-
form with overlapping classes or complex class bounda-
ries. Furthermore, these methods were not primarily 
designed for individual sample concordance, leading to 
potential inconsistencies in patient-to-molecular subtype 
assignments [22]. In contrast, TSP methods and their 
extensions [19, 23–26] offer scalability, interpretability, 
and robust feature selection. They generate gene rules by 
comparing expression values within a single sample, thus 
avoiding normalization with another dataset. However, 
their classification accuracy has often been suboptimal, 
limiting their clinical applicability and underscoring the 
need for more accurate and robust decision models.

In this study, we propose an advancement of TSP 
methods through the construction of rank-based trees 
combined with ensemble learning techniques. A single-
split tree is analogous to a TSP classifier, and developing 
deeper trees represents the integration of multiple TSPs 
for formulating a comprehensive decision rule. To miti-
gate overfitting, we create multiple trees and ensemble 
them using techniques such as random forests and gra-
dient boosting, thereby expanding the TSP framework 
from basic one-to-one gene comparisons to a more com-
plex many-to-one or many-to-many interaction model. 
Our approach not only enhances the TSP method but 
also leverages the strengths of ensemble learning. Build-
ing upon the work of [27], who demonstrated a basic 
random forest strategy comparable to the k-TSP method, 
our paper extends this by employing multi-class trees 
with class-balanced sampling. This strategy improves 
computational efficiency and prediction performance. 

Moreover, we extract interactive ranked gene pairs from 
our random forest model for added interpretive depth. 
To maximize predictive power, we meticulously tune and 
compare various parameters for tree construction and 
ensemble strategies. Additionally, recognizing the preva-
lence of noise and redundancy in gene expression data, 
we implement dimension-reduction techniques. These 
techniques are crucial for eliminating irrelevant features 
and isolating the most informative and discriminative 
patterns, thereby facilitating more efficient analysis and 
interpretation.

Methods
Rank‑based trees
In this section, we introduce a general framework for 
rank-based trees using pairwise gene comparisons among 
a number of gene expressions. Let X = (X1,X2, . . . ,XP) 
denote the expression values of P genes on an expres-
sion matrix, which could be generated from different 
platforms (see Fig.  1 subfigures A and B for conceptual 
illustration). Our objective is to use X to distinguish 
among K phenotypes for the cells in the tissue, denoted 
as Y ∈ {1, . . . ,K } . (Since the boosting algorithm only 
accommodates binary outcomes, we denote Y ∈ {−1, 1} 
for the boosting case.) A tree classifier is inferred from 
training data L = {(X(1),Y (1)), . . . , (X(N ),Y (N ))} , where 
(Xi,Yi) are independently distributed. For a given expres-
sion vector x , a classifier h associates it with a label 
h(X) ∈ {−1, 1} . We denote the tree predictor of h(x) as 
h(x,�,L) , where a parameter vector � = (θ1, θ2, . . . , θT ) 
associates the parameter θt with the t-th terminal nodes 
and T denotes the total number of terminal nodes.

To grow a rank-based classification tree, the splitting 
rule can be described as follows. If p = (p1, . . . , pK ) are 
the class proportions of outcome Y for classes 1 through 
K, the Gini index of impurity is defined as

As shown in Fig. 1C, by splitting features recursively into 
left and right daughter nodes, a tree is grown by mini-
mizing tree impurity. The Gini index split statistic for a 
split on node s on a pair of features Xi and Xj at a given 
tree node is

where the subscripts l = {Xj ≤ Xk} and r = {Xj > Xk} 
denote the left and right daughter nodes formed by the 
split at s and nl and nr are the sample sizes of the two 
daughter nodes; n = nl + nr is the parent sample size. 

φ(p) =

K
∑

k=1

pk(1− pk) = 1−

K
∑

k=1

p2k .

θ(Y ,Xi,Xj , s) =
nl

n
φ(pl)+

nr

n
φ(pr),
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With some algebra, this is equivalent to maximizing the 
split statistic

where nk ,l is the number of cases of class k in the 
left daughter node and nk is the number of cases of 
class k; n =

∑K
k=1 nk is the total sample size. At tree 

node s, we randomly select a set of candidate features 
X(s) = {X1′ , . . . ,XQ′ } , Q′ ≤ P , and the pair of variables 
with indices (is, js) will be split if

We partition the expression values into a set of gene pairs 
for constructing splits in the tree nodes and trees are 
built in a binary fashion: each internal node has an asso-
ciated splitting rule that uses two predictors, Xi and Xj , to 
assign a observation k to either its left or right child 
nodes, {X (k)

i ≤ X
(k)
j } or {X (k)

i > X
(k)
j } . The terminal nodes 

thus identify a partition of the observation space accord-
ing to the subdivision defined by a series of splitting 
rules. For each terminal node t, we can arrange the varia-
ble indices in pairs {(i1, j1), . . . , (it , jt)} , t = 1, . . . ,T − 1 , 
such that θt = {x : xi1 < xj1 , . . . , xit < xjt } . For a binary 
outcome Y ∈ {−1, 1} , we calculate the estimated proba-
bility for a given x as the proportion of class label 1 at the 

(1)

g(Y ,Xi,Xj , s) =
1

n

K
∑

k=1

n2k ,l

nl
+

1

n

K
∑

k=1

(nk − nk ,l)
2

n− nl
,

(2)(Xis ,Xjs) = arg max
i,j

g(Y ,Xi,Xj , s).

corresponding terminal node θt , p(x) = P(Y = 1|x ∈ θt) 
and estimate E[Y |x] as f (x) = 2p(x)− 1 . The estimator 
for a multi-class outcome of K labels can be calculated as 
the proportion of the corresponding class label, 
pk(x) = P(Y = k|x ∈ θt) and the tree takes a Bayes clas-
sifier h(x) = arg max

k∈{1,...,K }

P(Y = k|x ∈ θs).

Random Rank Forest
The rank-based trees could be of low accuracy with high 
variance. To prevent overfitting, we first ensemble these 
trees in a fashion of random forest [28, 29]. As in [28], 
we define a collection of randomized tree predictors 
{h(·,�m,L),m = 1, . . . ,M} . We denote the mth tree pre-
dictor of h(x) as h(x,�m,L) , m = 1, . . . ,M , where {�m} 
are independent identically distributed random quanti-
ties encoding the randomization needed for constructing 
a tree, which are selected prior to grow the tree. These 
pre-selected parameters are refered to as tuning param-
eters and discussed in the Discussion section. The tree 
predictors are combined to form the finite forest estima-
tor of h(x) as

and h(x) = arg max
k∈{1,...,K }

p̂k(x).

Although random forest offers the advantage of achiev-
ing high levels of accuracy, the decision rules become 

(3)p̂k(x) = P̂(Y = k|x) =
1

M

M
∑

m=1

�{h(x,�m,L)=k}

Fig. 1  A Examples of different platforms to obtain gene expression values. The venn diagram illustrates that certain prediction models are 
either unavailable or lack predictive accuracy when applied to data from particular platforms. B An illustration to show that gene expression values 
from different platforms are not comparable due to variations in chemistry, quantification, and normalization techniques used by each platform. C 
Illustration of a rank-based tree. D The methodological framework utilizing rank-based trees
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extremely complex after averaging the rank based trees, 
which motivates us to extract information from the 
blackbox to increase interpretability. Since each termi-
nal node of a tree can be viewed as a classification rule 
from multiple TSPs, we propose the Algorithm 1 to iden-
tify some importance classification rules. Note that each 
tree in a random forest algorithm is fitted from a boot-
strap sample of the original data, leaving approximately 
1− 0.632 = 0.368 out-of-sample data for each tree which 
is called out-of-bag (OOB). This data can be utilized to 
estimate the prediction performance and obtain an OOB 
prediction error without the need for an additional cross-
validation step to evaluate the prediction error. Here we 
calculate the OOB prediction error for each terminal 
node for selecting rules in Algorithm 1.

Algorithm 1  Extracting rules via rank-based trees

Rules from Algorithm  1 are constructed with multi-
ple TSPs so they are high-order classification rules. The 
classification rule is more interpretable than the classic 
permutation-based variable importance from random 
forests and might contribute to biological understanding. 
In our empirical studies, the top rules tend to be more 
complex than the simple decision rules from TSP meth-
ods, and less number of rules are needed to achieve com-
parable results as the k-TSP method. Although we can 
aggregate these rules in the fashion of TSP methods, we 
found that random rank forests always show better pre-
diction performance. Therefore, classification rules only 
serve the purpose of interpretation, instead of prediction.

Boosting with the LogitBoost cost
As another ensemble technique, boosting [30, 31] has been 
used as a powerful tool for classification, especially in high-
dimensional settings. As weak learners, random rank trees 
are ensembled according to a LogitBoost cost function [32] 
C(yi, F(xi)) = log(1+ exp(−2yiF(xi))) with yi ∈ {−1, 1} , 

where F(xi) = 1
2 log(

p(xi)
1−p(xi)

) and p(xi) = P(yi|xi) . In each 
iteration m, a regression tree is fit using the negative gradi-
ent of C(yi, F(xi)) as working responses

For a tree with S terminal nodes, the update uses a 
refined optimization with unique estimates for each ter-
minal node:

where

Note that unlike Eq. (1) for a classification tree, the split-
ting rule for partition θs,m is similar to a regression tree 
[33], which maximizes

where the subscripts l = {Xj ≤ Xk} and r = {Xj > Xk} 
denote the left and right daughter nodes for s; z̄l and z̄r 
denote the average of zm(xi) in the corresponding daugh-
ter nodes. After M iterations from Eq. (4), the final pre-
dictor FM(xi) is converted into a probability estimate

zm(xi) = −C ′(yi, F(xi)) =
2yi

1+ exp(2yiFm−1(xi))
.

(4)Fm(x) = Fm−1(x)+ �

S
∑

s=1

γs,m�{x∈θs,m},

γs,m = arg min
γ

∑

xi∈θs,m

C(yi, Fm−1(xi)+ γ )

=

∑

xi∈θs,m
zm(xi)

∑

xi∈θs,m
|zm(xi)|(2− |zm(xi)|)

.

(5)g ′(zm(xi),Xi ,Xj , s) = −

∑

xi∈θsl

[zm(xi)− z̄l ]
2
−

∑

xi∈θsr

[zm(xi)− z̄r ]2,

(6)p̂(xi) = 1/(1+ exp(−2yiFM(xi))).
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For an outcome with K class labels, we encode the data 
into K “one against all” datasets with the outcomes 
{Y = k} and {Y �= k} to compute p̂k(x).

Ensemble Algorithm with reduced dimension
The challenge of rank-based tree method is high dimen-
sionality. When we have p genes, there are O(p2) calcula-
tions involved in Eq. (2) for constructing tree nodes. As a 
solution, we propose a two-step ensemble algorithm, in 
which the first ensemble step is to reduce dimensionality 
and the second ensemble step is to predict the outcome.

Algorithm 2  Ensemble Algorithm with Reduced Dimension

123

For variable selection, we have to construct a vari-
able importance (VIMP) measurement based on a 
loss function. For classification problems, measures 
of performance used are the misclassification error 
or the Brier score [34–36]. For the latter, we have 
L(Y , p̂) = (1/K )

∑K
k=1

(

�{Y=k} − p̂k
)2 . To measure 

VIMP, we grow each tree using a bootstrap sample of the 
original data and the previously mentioned OOB data 
is used to calculate the loss function under the original 
OOB data and the permuted OOB data. Let LOOB be the 
OOB data and let p̂k(x̃(ij)) be the estimator for permuted 
x where the relationship of Xi and Xj is swapped in all 

the rank-based trees, which can be achieved by permut-
ing the ith and jth columns in LOOB . The VIMP for gene 
pairs Xi and Xj is defined as

Utilizing VIMP, the two-step ensemble algorithm is 
described in Algorithm 2.

Gene expression data and evaluation methods
In the next section, we evaluate the effectiveness of our 

ensemble methods of rank-based trees, as depicted in 
Fig. 1D, on gene expression datasets of both binary and 
multi-class outcomes. In this regard, we gathered 12 pub-
licly accessible gene expression datasets, with sample 
sizes ranging from 22 to 587 and numbers of genes rang-
ing from 85 to 2526. Table 1 summarizes these datasets, 
which are all related to studies of human cancer, includ-
ing liver, central nervous system, brain, prostate, lym-
phoma, breast, small round blue cell tumors, leukemia, 
lung and bladder. Further information can be obtained 
by referring to the relevant publications. The last dataset 
studies the classification of triple negative breast cancer 
(TNBC) with four subtypes [37], including two basal-
like (BL1 and BL2) subtypes, a mesenchymal (M) sub-
type, and a luminal androgen receptor (LAR) subtype. To 
evaluate the prediction performance of our methods in 
cross-platform scenarios, we also downloaded the TNBC 
datasets generated from RNA sequencing in [38] with a 
sample size of 26; in [39] with a sample size of 475; and 
in the Cancer Genome Atlas database [40] with a sample 

(7)I(Xi ,Xj) =

∑

s∈LOOB L[ys , p̂(xs)]
|LOOB|

−

∑

s∈LOOB L[ys , p̂k (x̃
(ij)
s )]

|LOOB|
.

1  Eqs. (1) and (3) are for random rank forest, while Eqs. (5) and (6) are for 
boosting.
2  We assigned cases to the opposite split when comparing “less than or 
equal to” and “greater than” for the corresponding gene pairs instead of per-
muting the raw data.
3  For random forest, OOB data is used for prediction.
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size of 136. The dataset in [37] was generated from the 
Affymetrix (Affy) GeneChip microarray; therefore, 
our training dataset and test dataset are from different 
platforms.

Other SSP methods and algorithm implementation
Beside the k-TSP method, we also compared our meth-
ods with the nearest template prediction (NTP) method, 
which compares the gene expression profile of a single 
sample to a pre-defined set of gene expression profiles, 
known as templates. The subclass label can be deter-
mined using a distance metric (e.g. cosine distance, 
Euclidean distance, etc.) as the similarity to each template 
[14]. In our comparison, k-TSP was implemented from 
the “switchbox” R package [52], in which the optimal 
number of gene pairs was selected from a range of val-
ues from 2 to 10 with fivefold cross-validation. For multi-
class classification, a one-vs-one scheme was used and 
a classifier was trained for each pair of subclasses [53]. 
To avoid ties in majority voting, only odd numbers were 
considered during training. We implemented the NTP 
method with the “CMScaller” package [54], which was 
originally created for classifying colorectal cancer pre-
clinical models [4, 55]. The prediction for each sample 
was determined using the sample’s closest cosine dis-
tance to each template. We utilized the “gbm” R package 
[56] for implementing our boosting algorithm and the 
“randomForestSRC” R package for our random forest 
algorithm [57]. For the random forest implementation, 
we adopted the multi-class tree with class-balanced sam-
pling instead of fitting separate one-versus-rest models 

for each class [27] to improve computational efficiency 
and prediction performance. We noticed that there 
are other classical methods available, such as k-nearest 
neighbor (KNN) and support vector machines (SVM). 
We did not present the results in Section 4 because the 
comparison was already presented in Tan et al. [21] and 
showed that k-TSP works superior or comparable to 
KNN and SVM (see Tables 3 and 4 in Tan et al. [21], and 
we have the same conclusion with them). We also tried 
random forest/boosted trees using single gene features, 
the results of which are similar to SVM, and we did not 
include the results due to limited space.

Performance measures
Given a dataset with sample size N and an outcome of K 
classes, let cij be the number of samples belonging to class 
i that are predicted to the jth class and the sample size for 
class i is denoted as ni =

∑K
j=1 cij (see Fig. 2). The perfor-

mance measure is defined as accuracy (ACC):

Table 1  Binary and multi-class datasets of gene expression profiles for cancer discrimination

a CNS central nervous system, AODs anaplastic oligodendrogliomas, NHL Non-Hodgkin’s lymphoma, SRBCTs small round blue cell tumors, ALL acute lymphoblastic 
leukemia, TNBC triple negative breast cancer
b N stands for number of samples, P for number of genes and K for number of classes
c We downloaded other three datasets [38–40] and trained our models on data from one platform (e.g. microarray) while tested its prediction performance on data 
from another platform (e.g. RNA-seq)

Datasetsa Platform N
b

P b K  b Class sample size References

Liver cDNA 180 85 2 HCC/liver = 104/76 [41]

CNS Affy 34 857 2 CMD/DMD = 25/9 [42]

Glioblastoma Affy 22 1152 2 CO/NO = 7/15 [43]

Prostate Affy 77 339 2 PR/N = 58/19 [44]

NHL cDNA 42 1095 2 DLBCL1/DLBCL2 = 21/21 [45]

Breast Affy 49 1198 2 ER+/ER− = 25/24 [46]

SRBCTs cDNA 83 1069 4 BL/EWS/NB/RMS = 29/11/18/25 [47]

Leukemia Affy 72 2194 3 MLL/ALL/AML = 24/20/28 [48]

Lung Affy 203 1543 5 ADE/SQU/SCC/NO = 139/17/6/21/20 [49]

Bladder Affy 40 1203 3 C1/C2/NO = 9/20/11 [50]

ALL Affy 248 2526 6 TALL/E2A/BCR/TEL/MLL/NO
= 15/27/64/20/79/43

[51]

TNBC Affy & RNAseqc 375 2188 4 BL1/BL2/M/LAR = 125/80/67/103 [37]

Fig. 2  Confusion matrix for a dataset with K classes
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Note that ACC is highly influenced by the imbalanced 
sample sizes among different classes. Therefore, we sub-
sample or bootstrap the data such that ni/N ≈ 1/K  . 
All datasets were randomly divided into class-balanced 
training (70%), validation (15%), and test data (15%). 
To evaluate the robustness and assess the performance 
of the methods, we fitted the four models on the train-
ing data, used the validation data for tuning parameters, 
and compared the ACC values on the corresponding test 
data. We replicated this procedure 50 times to compare 
the ACC values.

Results
Figure  3 summarizes the ACC results of our proposed 
methods, random rank forest (RRF) and boosting algo-
rithm with the LogitBoost cost (Boosting), on the bench-
mark datasets in Table 1 with a comparison of the k-TSP 
and NTP methods. The accuracy values were calculated 
using Eq. (8). The results show that our proposed meth-
ods work comparably well and outperform the existing 
k-TSP and NTP methods. For the binary classification 
problems, the accuracy values from boosting, RRF, k-TSP 
and NTP are 0.89, 0.94, 0.90 and 0.80 for the Liver data-
set; 0.65, 0.60, 0.47 and 0.53 for the CNS dataset; 0.73, 
0.77, 0.79, 0.69 for the Glioblastoma dataset; 0.92, 0.92, 
0.89 and 0.62 for the Prostate dataset; 0.80, 0.93, 0.86 and 
0.13 for the NHL dataset; and 0.80, 0.88, 0.84 and 0.17 
for the Breast dataset. Overall, RRF has better perfor-
mance than Boosting in binary classifications. Muti-class 
problems are more challenging than binary classifications 
for all four methods, in which Boosting typically outper-
forms RRF. For the multi-class problems, the accuracy 
values from boosting, RRF, k-TSP and NTP are 1.00, 1.00, 
0.98 and 0.42 for the SRBCTs dataset; 0.97, 0.97, 0.93 and 
0.92 for the Leukemia dataset; 0.94, 0.93, 0.92, 0.28 for 

(8)ACC =

∑K
i=1 cii

N
.

the Lung dataset; 0.58, 0.53, 0.41 and 0.36 for the Blad-
der dataset; 0.67, 0.59, 0.34 and 0.48 for the ALL dataset; 
and 0.91, 0.90, 0.82 and 0.50 for the TNBC dataset. The 
NTP method is among the weakest performance because 
it does not have a feature selection procedure. RRF and 
the boosting algorithm outperform k-TSP because they 
extend the framework of k-TSP from one gene-pair com-
parison at a time to integrating a large number of inter-
acted gene-pair comparisons.

Both boosting and random forest have proven to be 
successful in our real-data applications. Their effective-
ness stems from their ability to handle high-dimensional 
complex relationships, reduce overfitting, and provide 
robust predictions by leveraging ensemble methods. 
However, the choice between boosting and random for-
est depends on the specific dataset characteristics, and 
it is often a matter of empirical evaluation to determine 
which method performs better for a given task. We rec-
ommend random forest over boosting for multiclass 
problems and large-size datasets since the boosting 
model has to transform multiclass outcomes into binary 
outcomes to calculate loss function and trees in boost-
ing models are sequentially grown instead of parallelly 
grown. The k-TSP outperforms the NTP method because 
it can be more robust to noise and outliers. By consider-
ing multiple top scoring pairs, the influence of individual 
noisy or outlier templates is reduced, leading to more 
reliable predictions. On the other hand, the NTP method 
is more susceptible to the influence of outliers or noise 
in the template set because it relies on a single nearest 
template.

Table  2 shows the dimension reduction results from 
RRF and boosting. There are two stages for variable 
selection: gene selection in the initial stage and gene-pair 
selection in the subsequent stage, whose results were dis-
played as the number of genes and number of gene pairs 
selected, respectively. For the TNBC dataset, 49 com-
mon genes are identified after data preprocessing across 
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different platforms, which are all considered informative 
variables by the algorithm. Although the prediction per-
formance of boosting and random forest appears compa-
rable, it is an interesting observation that boosting tends 
to select fewer variables than random rank forests. How-
ever, the variance of the total selected variables by RRF 
appears to be smaller than that observed with boosting. 
We posit that rank-based trees excel in borrowing infor-
mation across different variables, resulting in a robust 
prediction performance despite variations in variable 
selection results.

As mentioned in the previous section, one advan-
tage of RRF is its capacity to extract precise and easily 
understandable rules that offer biological insights into 
the classification process. We used the terminal nodes 
of rank-based trees as the candidate “simple decision 
rules” and adopted a similar algorithm of k-TSP [21] to 
rank and select these candidate rules. The result for the 
Liver dataset is listed in Table  3. These rules are differ-
ent from those in the k-TSP methods since k-TSP only 
ranks gene pairs one by one, while rules from trees are 
combinations of multiple gene pairs. We found that this 
multivariate fashion can improve prediction accuracy 
with much fewer rules than k-TSP. The accuracy values 
from boosting, RRF, k-TSP and NTP are 0.89, 0.94, 0.90 
and 0.80 for this dataset, while adopting only four rules 
in Table  3 could provide comparable accuracy of 0.85. 
The results obtained validate the findings of [41], which 
demonstrated that our method is capable of generating 

accurate and interpretable decision rules for effectively 
classifying microarray data.

Discussion
The results shown in the previous section are subject to 
specific tuning parameters, which are discussed in this 
section. Although the following results are problem-
specific, they show some robustness of our model and 
provide some insight for the readers to customize grid 
search on their own. The following parameters are influ-
ential for optimizing the model’s behavior and adapting it 
to specific datasets. We suggest systematically exploring 
the parameter space, evaluating different configurations, 
and selecting the optimal set of parameter values based 
on performance metrics.

Learning rate � for boosting
The learning rate in boosting algorithms shown in 
Eq.  (4) determines the contribution of each weak 
learner (e.g., rank-based tree) to the final ensemble 

Table 2  Dimension reduction results from random forest and boosting

a Total number of selected genes from Line 3 in Algorithm 2
b Total number of selected gene pairs from Line 9 in Algorithm 2
c Mean and standard deviation (SD) were calculated from 50 replications

Random Rank Forest Boosting

# of genesa # of Gene pairsb # of genes # of gene pairs

Meanc SDc Mean SD Mean SD Mean SD

Liver 84.98 0.14 728.78 36.37 70.02 13.03 159.28 48.74

CNS 89.60 3.27 207.18 18.86 40.82 10.51 1.54 3.68

Glioblastoma 167.94 11.61 192.86 16.41 53.34 37.35 45.66 42.36

Prostate 253.46 10.90 622.16 44.49 126.46 62.02 112.44 65.86

NHL 200.56 12.09 200.80 20.51 53.78 50.04 19.54 27.68

Breast 231.18 15.02 256.22 25.39 50.08 35.36 33.74 35.75

SRBCTs 461.50 16.52 501.48 15.54 206.77 92.36 282.57 121.13

Leukemia 327.90 18.24 316.14 23.91 109.88 49.24 117.00 49.49

Lung 588.84 20.05 971.28 38.90 685.8 164.56 920.22 131.11

Bladder 342.88 15.18 421.02 19.29 91.84 52.94 76.90 46.89

ALL 1782.52 25.62 2923.06 59.08 379.68 104.62 407.97 150.75

TNBC 49.00 0.00 1021.98 7.79 49.00 0.00 427.84 41.63

Table 3  Classification rules from Algorithm 1 for the liver dataset

# If Then Else

1 NCOR1 > BNIP2 and DEF6 < LY6E Liver HCC

2 LSM8 > NFS1 and OLFML2B > SMAD7 
and SDF2 < MAPK14

Liver HCC

3 LY6E < NMT1-PLCD3 and BNIP2 < HPGDS Liver HCC

4 LY6E < TCF4 and DEF6 < B3GNT5 Liver HCC
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model. It controls the amount by which the weights of 
misclassified samples are adjusted in each iteration of 
boosting. The learning rate influences boosting via the 
speed of convergence, model complexity, model accu-
racy and robustness to noise and outliers. Figure  4 
demonstrates the effect of the learning rate on the 
classification of the Liver dataset. Overall, the model 
is robust to learning rates in a wide range. It’s impor-
tant to note that the optimal learning rate for boosting 
depends on the specific dataset and problem at hand. 
We used cross-validation to determine the learning rate 
that achieves the best balance between convergence 
speed, accuracy, and robustness for a given dataset.

Number of trees/iterations M
The number of trees is an important parameter in both 
boosting algorithms and random forests. Increasing the 
number of trees tends to improve the model’s perfor-
mance since as more trees are added, the boosting model 
can better capture complex patterns and reduce both 
bias and variance errors; with more trees, the random 
forest ensemble becomes more robust and stable as it 
aggregates predictions from a larger number of diverse 
decision trees. Figure  5 demonstrates the influence of 
iteration/tree number on model performance for the 
Liver dataset, where a number of 250 seems sufficient 
for both random forest and boosting. For all the data-
sets, adding too many trees is unlikely to increase the risk 
of overfitting; however, increasing the number of trees 
also increases the computational cost of training and 
inference. Therefore, there is a trade-off between model 
performance and computational resources. From our 
empirical experimentation, an iteration number of 500 is 
sufficient for most datasets in both random forests and 
boosting and increasing the number larger than 1000 is 
unlikely to make any difference.

Depths of trees and terminal node size
The depth of trees, also known as the tree’s maximum 
depth or tree size, plays a crucial role in growing rank-
based trees. It has a similar influence as terminal node 
size since the deeper the tree is, the smaller the terminal 
node size is. In boosting algorithms, shallow trees (lim-
ited depth) are commonly used to prevent overfitting and 
improve the model’s generalization ability. By limiting the 

0.6

0.7

0.8

0.9

0.001 0.005 0.3 0.5 0.7 1 2 5 8 10
Learning rate

Ac
cu

ra
cy

Fig. 4  Effect of learning rate of boosting on model performance

0.7

0.8

0.9

0 250 500 750 1000
Number of Iteration

A
cc

ur
ac

y 
of

 B
oo

st
in

g

0.7

0.8

0.9

0 250 500 750 1000
Number of Trees

A
cc

ur
ac

y 
of

 R
R

F

Fig. 5  Robustness of iteration/tree number to model performance



Page 10 of 13Lu et al. Journal of Translational Medicine          (2024) 22:140 

complexity of individual trees, boosting focuses on learn-
ing simple rules or patterns, which can be combined to 
form a powerful ensemble. On the other hand, random 
forests typically use deep trees to achieve higher accu-
racy and capture more complex relationships in the data. 
Deeper trees can capture intricate patterns and interac-
tions among features, which can improve the model’s 
predictive power. Random forests overcome overfitting 
caused by deep trees via averaging across a large number 
of trees. As shown in Figs. 6 and 7 for the Liver dataset, it 
is crucial to strike a balance between the tree depth and 
the model’s generalization ability in both boosting and 
random forests. The optimal tree depth depends on the 
dataset characteristics, and we used cross-validation to 
determine the appropriate tree depth without a specific 
constraint on the terminal node size.

Note that the tree depth of 1 in the first column of 
Fig.  6 for random forest is roughly equivalent to the k-
TSP method since a tree of one split is equivalent to a top 
scoring pair. Figure  6 demonstrates that extending the 

k-TSP method via growing deeper trees and ensemble 
methods can achieve higher accuracy in prediction.

Number of competing variables q at each split
The number of competing gene pairs at each split, also 
known as feature subspace size, is defined in Eq.  (2) 
denoted as q. A larger q will increase the computational 
cost. However, it does not hold much significance in 
boosting algorithms nor random forests. Boosting algo-
rithms typically do not involve explicit feature subsam-
pling at each split. Instead, they focus on sequentially 
adjusting the weights of training examples to improve 
the model’s performance. Therefore, the number of com-
peting variables at each split does not directly impact 
boosting. In random forests, the number of competing 
variables at each split determines the randomness and 
diversity among decision trees in the ensemble. A smaller 
number of competing features at each split helps to 
decorrelate the trees in the random forest ensemble and 
prevents a few dominant features from overshadowing 

0.8

0.9

1.0

1 2 3 4 5 6 7
Tree Depth

Ac
cu

ra
cy Method

RRF

Boosting

Fig. 6  Effect of tree depth on model performance

0.6

0.7

0.8

0.9

1.0

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
Tree node size / Total sample size

Ac
cu

ra
cy Method

RRF

Boosting

Fig. 7  Effect of terminal node size on model performance



Page 11 of 13Lu et al. Journal of Translational Medicine          (2024) 22:140 	

others. It promotes diversity among the trees, leading to 
a more robust and accurate ensemble. However, as shown 
in Fig. 8, random forest is also robust to the number of 
competing variables since the total number of variables 
is large in genetic datasets. In other words, when q << p , 
the influence of q is small.

Conclusions
In this study, we introduce an advanced rank-based tree 
model that builds upon TSP methods, incorporating 
ensemble techniques such as boosting and random for-
ests to achieve enhanced predictive power. This approach 
allows us to derive interpretable rules from the terminal 
nodes of rank-based trees, akin to TSP methods. Our 
classifiers, grounded in the ranking of gene expression 
values within individual profiles, remain robust against 
preprocessing effects. When tested across twelve diverse 
human cancer gene expression datasets, both binary and 
multi-class, our methods demonstrated marked superior-
ity over traditional k-TSP and NTP classifiers. A notable 
feature of our Random Forest-derived rules is their suc-
cinctness, comprising fewer gene pairs while maintaining 
or surpassing accuracy in predictions.

The strength of our approach lies in the multivari-
ate capability of decision trees, which adeptly adjust for 
multiple ranked gene pairings. This ability to encapsulate 
intricate gene-target outcome relationships enables the 
learning of complex non-linear patterns and gene inter-
actions. In contrast, conventional TSP methods, often 
restricted to basic if-then logic, may falter in capturing 
these complexities. Our method addresses the common 
issue of overfitting in tree models by integrating ensem-
ble techniques, which enhances both the accuracy and 
robustness of the predictions. This integration avoids the 
complexities of tree construction rules, focusing instead 

on leveraging the collective strength of multiple decision 
trees [58].

Furthermore, these rank-based trees serve as fun-
damental units in ensemble methods, such as random 
forests and boosting algorithms. The aggregating of mul-
tiple trees in these methods not only improves prediction 
accuracy but also offers resilience against model biases. 
By employing data resampling techniques, we utilize 
class-balanced sampling strategies, effectively addressing 
the prevalent challenge of class imbalance in many data-
sets [27, 59–61]. This approach offers a notable advan-
tage over the one-versus-rest models, which, despite 
their appearance of treating class categories equally, still 
grapple with class imbalance within individual category 
models.

While tree-based algorithms offer optimization ave-
nues, such as missing data imputation or feature impor-
tance analysis [62], our study also acknowledges certain 
limitations that warrant further exploration. One such 
area is the handling of ties in ranking variables. Our 
methods demonstrated reduced effectiveness in datasets 
with abundant zero values, suggesting the need for strat-
egies like introducing artificial noise to enhance model 
performance [63]. Another aspect for future refinement 
is the computational intensity of our dimension reduc-
tion step, which currently relies on random forest or 
boosting models, as opposed to more straightforward 
filter methods [64]. Addressing these limitations will be 
pivotal in our ongoing efforts to refine and enhance the 
efficacy of rank-based tree methods for gene expression 
data classification.
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