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Abstract 

Background Neuromyelitis optica spectrum disorders (NMOSD) are autoimmune conditions that affect the central 
nervous system. The contribution of peripheral abnormalities to the disease’s pathogenesis is not well understood.

Methods To investigate this, we employed a multi-omics approach analyzing blood samples from 52 NMOSD 
patients and 46 healthy controls (HC). This included mass cytometry, cytokine arrays, and targeted metabolomics. 
We then analyzed the peripheral changes of NMOSD, and features related to NMOSD’s disease severity. Furthermore, 
an integrative analysis was conducted to identify the distinguishing characteristics of NMOSD from HC. Additionally, 
we unveiled the variations in peripheral features among different clinical subgroups within NMOSD. An independ-
ent cohort of 40 individuals with NMOSD was utilized to assess the serum levels of fibroblast activation protein alpha 
(FAP).

Results Our analysis revealed a distinct peripheral immune and metabolic signature in NMOSD patients. This sig-
nature is characterized by an increase in monocytes and a decrease in regulatory T cells, dendritic cells, natural killer 
cells, and various T cell subsets. Additionally, we found elevated levels of inflammatory cytokines and reduced levels 
of tissue-repair cytokines. Metabolic changes were also evident, with higher levels of bile acids, lactates, triglycerides, 
and lower levels of dehydroepiandrosterone sulfate, homoarginine, octadecadienoic acid (FA[18:2]), and sphingolip-
ids. We identified distinctive biomarkers differentiating NMOSD from HC and found blood factors correlating with dis-
ease severity. Among these, fibroblast activation protein alpha (FAP) was a notable marker of disease progression.
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Conclusions Our comprehensive blood profile analysis offers new insights into NMOSD pathophysiology, revealing 
significant peripheral immune and metabolic alterations. This work lays the groundwork for future biomarker identifi-
cation and mechanistic studies in NMOSD, highlighting the potential of FAP as a marker of disease progression.

Keywords Neuromyelitis optica spectrum disorders, Blood immune cells phenotyping, Plasma cytokine array, Plasma 
metabolomics, Biomarker

Introduction
Neuromyelitis optica spectrum disorders (NMOSD) are 
inflammatory disorders targeting the central nervous sys-
tem (CNS), primarily affecting the optic nerve and spi-
nal cord. Previously categorized as a subtype of multiple 
sclerosis (MS), NMOSD exhibits distinct clinical char-
acteristics, etiologies, and therapeutic approaches [1]. 
Prevalence is about 1 per 100,000 in Whites and 3.5 per 
100,000 among East Asians [2]. Most affected are individ-
uals aged 35–45, experiencing high relapses and disability 
rates; over 90% have multiple relapses within three years 
[3, 4]. Recent advancements have refined the concept of 
NMOSD through the identification of the aquaporin-4 
(AQP4) autoantibody (NMO-IgG) in roughly 70% of 
patients [5] and the myelin oligodendrocyte glycoprotein 
(MOG) autoantibody in approximately 40% of AQP4-
negative cases [6]. Though crucial for diagnosis, the 
role of NMO-IgG in managing disease progression and 
treatment remains debated [7–9]. The recurrent, severe 
nature of NMOSD highlights the pressing necessity for 
precise diagnostic tools and a deeper understanding of its 
pathogenesis, given its status as an incurable disease.

There is a well-established role for humoral immu-
nity in the pathogenesis of NMOSD, while recent stud-
ies increasingly highlight the significant involvement of 
cellular immunity. Elevated levels of  CD69+T cells and 
 CD40L+ CD4T cells during acute phases, associated with 
greater disease severity, indicate a key role for cellular 
immunity [10, 11]. The proportion of IL-22-secreting 
CD4T cells and Th17 cells in the blood is also elevated 
in NMOSD [12, 13], and Th17 cells have a positive corre-
lation with disease severity [14, 15]. These findings dem-
onstrate that cellular immunity is involved in NMOSD 
pathogenesis, and their detailed understanding could 
contribute to the development of effective therapies. 
Moreover, many studies have explored the role of periph-
eral inflammatory factors in NMOSD pathogenesis, and 
IL-6 is among the most widely studied. This cytokine is 
significantly elevated in the blood and cerebrospinal fluid 
(CSF) of NMOSD patients and is believed to promote 
plasma cell survival, stimulate the production of AQP4 
autoantibodies, disrupt the integrity and functionality of 
the blood–brain barrier, and enhance pro-inflammatory 
T lymphocyte differentiation and activation [16]. Besides, 
metabolic disturbances involving tryptophan metabolites 

also play a role in the development of NMOSD [17–19]. 
However, we still lack a comprehensive understand-
ing of how cellular immunity and cytokines, and meta-
bolic changes contribute to the onset and progression of 
NMOSD.

Considering NMOSD as an inflammatory autoimmune 
CNS disease increasingly implicates peripheral immune 
responses in exacerbating CNS pathology [20, 21]. The 
pronounced effects of an inflammatory milieu and the 
disruption of the blood–brain barrier on CNS integrity 
within NMOSD illuminate our limited understanding of 
the peripheral alterations in this condition. To address 
this gap and provide new potential biomarkers and ther-
apeutic targets, we conducted a multi-omics analysis 
of blood samples collected from NMOSD patients and 
healthy controls (HC). We used this approach to com-
prehensively analyze the alteration of blood immune 
cell phenotypes, plasma proteins, and metabolites in 
NMOSD and to reveal disease-related alterations and 
severity-related systemic factors. We also established 
inter-correlation networks across multi-omics levels and 
discriminative signatures to differentiate NMOSD from 
HC. Furthermore, we compared peripheral differences 
between different clinical subgroups to identify poten-
tial biomarkers associated with disease severity. Besides, 
an independent cohort of NMOSD patients was used to 
confirm the findings. Our study provides an important 
basis for further investigation into the pathogenesis of 
NMOSD.

Materials and methods
Participants
A study cohort of 52 NMOSD patients and 46 HC 
were recruited from Ruijin Hospital and Huashan Hos-
pital, Shanghai, China. An independent cohort of 40 
NMOSD patients, including 20 with their first episode 
and 20 experiencing a relapse, was recruited from Rui-
jin Hospital, Shanghai, China. All the NMOSD patients 
fulfilled the international consensus diagnostic crite-
ria for NMOSD [22]. The exclusion criteria were as fol-
lows: (1) cardiovascular and/or metabolic diseases; (2) 
psychiatric disorders and/or neurologic disease other 
than MS; (3) genetic disorders, cancer, or other autoim-
mune conditions; (4) body mass index (weight/height2) 
higher than 30; and (5) pregnancy. These criteria were 
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based on in-depth medical history investigations and 
extensive laboratory tests, which included a complete 
blood count, liver function tests, kidney function tests, 
electrolyte levels, assessments for disseminated intra-
vascular coagulation, tumor markers, autoimmune anti-
bodies, and advanced imaging techniques such as head 
and spinal magnetic resonance imaging, chest computed 
tomography, abdominal ultrasound, and urinary system 
ultrasound. The study was approved by the Ethics Com-
mittee of Ruijin Hospital and Huashan Hospital and con-
ducted in accordance with the principles of the Helsinki 
Declaration. All participants provided written informed 
consent.

The Expanded Disability Status Scale (EDSS) score 
is utilized to evaluate the disability level in all NMOSD 
patients. The Multiple Sclerosis Severity Score (MSSS) is 
used to determine the severity of NMOSD by adjusting 
the EDSS score to account for the duration of the dis-
ease based on a previously described method [23]. The 
level of plasma AQP4 and MOG antibodies of patients 
was determined by a cell-based assay. Briefly, this assay 
involves introducing the antigen gene into mammalian 
cells (HEK293T) to induce specific expression of the 
target antigen. Antibodies present in patient specimens 
specifically bind to the antigen, and then fluorescently 
labeled secondary antibodies bind to these primary anti-
bodies. The results are interpreted based on the fluores-
cence observed under a microscope (DM IL LBD, Leica 
Microsystems CMS GmbH).

Mass cytometry analysis of blood immune cells
Peripheral blood samples were collected from both HC 
(n = 46) and NMOSD (n = 48) patients and collected into 
BD Vacutainer K2 EDTA tubes (BD, 366,643). The upper 
layer plasma was stored at -80  °C until further analysis 
after centrifuging at 350 g for 10 min. The lower layer cells 
were subjected to red blood cell lysis for 10 min at room 
temperature. The peripheral blood mononuclear cells 
were separated and analyzed by mass cytometry accord-
ing to the previous study [24]. The cells were washed 
twice with phosphate-buffered saline (PBS) and stained 
with the Human Immune Monitoring Panel Kit (Fluid-
igm, Cat. No. #201,324). For viability staining, the cells 
were stained with Cisplatin (Fluidigm, Cat. No. #201,064) 
at a final concentration of 0.1 μM before surface staining 
for 4  min. Fc receptors were blocked by incubating the 
cells with Cell staining buffer for 10  min at room tem-
perature. The surface antibodies cocktail (Supplementary 
Key Resource Table) was added to the cell suspension for 
30 min on ice. The cells were then washed with staining 
buffer and fixed with 1.6% paraformaldehyde (Thermo 
Fisher, Cat.No. #28,908) for 10  min at room tempera-
ture. Cells were suspended in Ir-Interchelator (Fluidigm, 

Cat. No. #201192B) in Fix/Perm buffer (Fluidigm, Cat. 
No. #201,067) and incubated overnight at 2–8℃. Cells 
were then resuspended with Cell Acquisition Solution 
(Fluidigm, Cat.No. #201,237) with a 1:10 dilution of 
EQ Four Element Calibration beads (Fluidigm, Cat.No. 
#201,078) and filtered through a 35 μm nylon mesh filter 
cap (Corning, No. #352,235). The cells were acquired on 
a Helios Mass Cytometer (Fluidigm) at an event rate of 
200–300 events/second. Mass cytometry data files were 
exported and analyzed using Cytobank analysis software 
(https:// www. cytob ank. org/), with  CD45highCD66− gat-
ing to exclude granulocytes for their high proportion and 
instability.

Human cytokine antibody array analysis
Peripheral blood samples were obtained from both HC 
(n = 46) and NMOSD (n = 46) patients and placed into 
BD Vacutainer K2 EDTA tubes (BD, #366,643). Subse-
quently, the plasma samples were separated following 
the removal of blood cells and stored in a -80℃ until 
use. The detection of different cytokines in the plasma 
were conducted by RayBiotech (Guangzhou, China) with 
Quantibody® Human Cytokine Antibody Array 440 kit 
(RayBiotech, Inc., Cat# QAH-CAA-440). The experi-
mental procedures were carried out following the man-
ufacturer’s instructions, as previously described [25]. In 
brief, 100 μL of sample diluent was added to each well 
and incubated at room temperature for 30 min to block 
the slides. Then, 100 μL of samples or standard cytokines 
were added to the wells and incubated at room tempera-
ture for 2 h. After washing the wells 5 times with 150 μL 
of 1 × Wash Buffer I (5  min each) and 2 times with 150 
μL of 1 × Wash Buffer II (5 min each) at room tempera-
ture, 80μL of detection antibody cocktail was added to 
each well and incubated at room temperature for 2  h. 
After another round of washing, 80μL of Cy3 equivalent 
dye-conjugated streptavidin was added and incubated for 
1 h at room temperature. The signal was collected using a 
laser scanner (InnoScan 300 Microarray Scanner, Innop-
sys) after a final wash step.

MxP® Quant 500 kit metabolite measurements
Peripheral blood specimens were collected from HC 
(n = 46) and NMOSD (n = 47) patients and transferred 
into BD Vacutainer K2 EDTA tubes (BD, #366,643). Fol-
lowing this, the plasma was extracted by discarding the 
blood cells and stored in a -80℃ until use. Metabolites 
were measured with a targeted metabolomics approach 
using the MxP® Quant 500 kit (BIOCRATES Life Science 
AG, Innsbruck, Austria), with an ultra-performance liq-
uid chromatography (UPLC)/MS/MS system [ExionLC 
UPLC (Sciex), QTRAP  6500+ triple quadrupole/linear 
ion trap MS/MS (Sciex)] which provides measurements 

https://www.cytobank.org/
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of up to 630 endogenous and microbiome-derived 
metabolites quantitatively and/or semiquantitatively. The 
assay was conducted in accordance with the manufactur-
er’s instructions, as described in the previous study [24]. 
The  MxP® Quant 500 kit was developed and validated 
close to the guidelines for bioanalytical method valida-
tion by the US Food and Drug Administration (FDA) 
and European Medicines Agency (EMA) for its use with 
human plasma. It includes internal and calibration stand-
ards to ensure accurate quantification and result repro-
ducibility. Plasma samples from 93 participants were 
analyzed, with each assay plate containing duplicates of a 
quality control pool from 10 human plasma samples. Raw 
MS data acquisition was performed using Analyst soft-
ware version 1.6.3 (Sciex, Framingham, MA, USA). MS 
data processing and analyte concentration calculation 
were carried out by Biocrates MetIDQ™ software.

Enzyme‑linked immunosorbent assay (ELISA)
In an independent cohort of 40 NMOSD patients, serum 
FAP levels were measured using the Human FAP ELISA 
Kit (cat. Code: ab193701, Abcam, USA) according to the 
manufacturer’s instructions. The FAP concentration (ng/
mL) was calculated according to the standard curve.

Statistical analysis
The samples were from two cohorts: HC and NMOSD. 
To prepare the data for subsequent analysis, we excluded 
features of blood immune cells, plasma cytokines, and 
metabolites that were present in less than 30% of the 
participants, and then implemented K-nearest neighbor 
(KNN) imputation to address missing values. Coefficient 
of variation (CV) values of cytokines and metabolites 
that are less than 20% are acceptable for data analysis.

Linear regression models were employed to evaluate 
the differences in immune cell subsets, cytokines, and 
metabolites, while adjusting for confounding factors such 
as age and sex. This approach allows for the identification 
of variables that show significant changes across differ-
ent groups. To account for the multiple testing problem 
and to control the false discovery rate, we applied the 
Benjamini–Hochberg procedure for adjusting p-values. 
Features exhibiting an adjusted p-value of less than 0.05 
were identified as statistically significant. Box plots were 
used to visualize the significantly changed immune cell 
subsets or metabolites, with the central line represent-
ing the median, the box denoting the interquartile range 
(IQR), and the whiskers extending to the furthest data 
point within 1.5 times the IQR from the box to describe 
data spread. Bar plots were made to visualize the change 
of differential features between NMOSD and HC, EDSS-
H (≥ 4) and EDSS-L (< 4), AQP4-H (≥ 100:1) and AQP4-
L (< 100:1), T2 (> 3  years) and T1 (< 3  years), HR (≥ 1 

relapse in the past year) and LR (no relapse in the past 
year), recurrence and first episode by ggpubr R package.

Principal component analysis (PCA) was an uncon-
strained ordination method for dimension reduction. 
PCA could determine principal components (PCs) which 
explain the most variance for data. Therefore, PCA pro-
jects high dimensional data on 2-dimensional scatterplot 
which enables the assessment of sample grouping.

Spearman correlation was applied between the selected 
features and MSSS. Spearman correlation analysis was 
performed to examine the correlation between immune 
cells, cytokines and metabolites, using the associate 
function of R package. The immune cells, cytokines and 
metabolites significantly differentially expressed between 
HC and NMOSD were identified by linear regression 
with adjusted for age and sex and then used in this analy-
sis. The associations with correlation coefficient > 0.3 and 
p.adj < 0.05 were selected.

Integrative network analysis: identifying associations 
between blood‑borne immune cells, plasma cytokines, 
and metabolites
To integrate blood immune cells, plasma cytokines, and 
metabolites data from HC and NMOSD groups, we 
used the Cross-Omics Multi-Way Association Study 
(xMWAS) package in R [26]. Integrative network analy-
sis was performed using sparse partial least squares 
regression analysis, a multivariate approach for data 
integration to only include associations with |r|> 0.7 and 
p < 0.05, and network analysis techniques to evaluate the 
centrality (importance) of nodes in the integrative net-
works. The multilevel community detection method in 
xMWAS was used to identify communities of tightly con-
nected immune cells, cytokines, metabolites. Commu-
nity detection reveals topological modules comprised of 
functionally related features. The analysis also identifies 
nodes that undergo network changes, which are deter-
mined based on the Delta centrality (importance) meas-
ure (ECMnmosd—ECMcontrol), which a measure of the 
influence of a node in a network. A high eigenvector cen-
trality means that a node is connected to any nodes who 
themselves have high scores. ECM, eigenvector centrality 
measure.

Integrative multi‑omics analysis
To identify important signatures that highly correlated 
among multi-omics and potentially discriminative for 
HC and NMOSD, we performed Data Integration Anal-
ysis for Biomarker discovery using Latent Component 
(DIABLO) on omics data of the blood immune cells, the 
plasma cytokines and plasma metabolites (LC–MS/FIA). 
DIABLO is based on Partial Least Squares Discriminant 
Analysis (PLS-DA) and aims to integrate multi-omics 
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data by maximizing covariance between all pairs of data-
sets. Prior to DIABLO, multi-omics data was log trans-
formed. As discrimination is prioritized, the design 
matrix was set to 0.1. DIABLO performed 10 times 
repeat of tenfold cross validation by block.splsda and 
tune.block.splsda functions in mixomics, to tune suc-
cessively model hyperparameters for a final model which 
minimizes classification error rate.

The first 2 components from the final model are con-
sidered and demonstrated in scatterplot using plotIndiv 
function for samples and plotVar function for features. 
Clustering of samples by group (HC/NMOSD) and fea-
tures by omics dataset was assessed. The mixomics pack-
age also provides loadingplot function and cim function 
to reveal important features (selected by DIABLO) for 
each omics dataset, and to combine them in a heatmap, 
respectively. Heatmap that computed by cim function 
added a dendrogram with hierarchical clustering (Euclid-
ean distance and complete linkage). Only the important 
features selected in component 1 of each omics dataset 
were assessed.

Results
Characteristics of participants and study design
This study enrolled 46 HC (13 males, 33 females) and 52 
patients diagnosed with NMOSD (9 males, 43 females). 
The mean age was 42 ± 2.42  years in the HC group and 
47.8 ± 2.11  years in the NMOSD group, with no signifi-
cant age difference (P = 0.07) or sex difference (P = 0.23) 
between the groups. In the NMOSD cohort, the EDSS 
was 3.16 ± 0.34 and the MSSS was 5.38 ± 0.44. The mean 
duration of disease was 42.88 ± 9.74 months. Out of the 
NMOSD group, 31 patients exhibited an AQP4 antibody 
titer exceeding 100:1, whereas 21 patients had a titer 
below 100:1, including 13 who tested negative for the 
antibody. All NMOSD patients were negative for MOG 
antibodies. Detailed participant details information 
can be found in Table S1. For conducting a multi-omics 
analysis, blood samples were collected from both groups 
to investigate alterations in immune cell phenotypes, 
plasma cytokines, and metabolites in the NMOSD, ana-
lyzed using bioinformatics tools as depicted in Fig. 1A.

Alterations of blood immune cell subtypes in NMOSD
To explore the influence of peripheral immune cells on 
the progression of NMOSD, we assessed thirty immune 
cell subtypes using mass cytometry (Fig. S1A). We identi-
fied many significantly changed immune cell subtypes in 
NMOSD patients as compared to HC group. Specifically, 
the NMOSD group exhibited an increased proportion 
of monocytes (Fig.  1B), along with decreased propor-
tion of regulatory T cells (Treg) and its subtypes—acti-
vated Treg and secreting Treg, when compared to the HC 

group (Fig. 1C–E). Additionally, we observed reductions 
in dendritic cells (DC), encompassing both plasmacy-
toid DC (pDC) and myeloid DC (mDC), as well as natu-
ral killer (NK) cells, T cells,  CD4+T cells,  CD28+T cells, 
 CD28+CD4T cells,  CD28+CD8T cells, and Th17 cells 
(Fig.  1F–M, Fig. S1B-C). Additionally, we investigated 
potential correlations between blood immune cell sub-
types and the MSSS; however, our findings indicated no 
significant correlations.

Alterations of plasma cytokines in NMOSD
Plasma cytokines play a pivotal role in modulating 
peripheral inflammation and may interact with periph-
eral immune cells, influencing NMOSD pathogenesis. 
To gain a comprehensive understanding of the role of 
plasma cytokines in NMOSD pathogenesis, we exam-
ined the expression profiles of 440 cytokines using a 
cytokine array. We found significant elevations in sev-
eral cytokines in the NMOSD group compared to the 
HC group, including hepatocyte growth factor activator 
inhibitor type 2 (HAI-2), S100 calcium binding protein 
A8 (S100A8), growth differentiation factor 15 (GDF15), 
and Prostasin. In contrast, several cytokines were sig-
nificantly decreased in NMOSD, such as stem cell factor 
(SCF), neurotrophin-3 (NT-3), bone morphogenetic pro-
tein 2 (BMP-2), galectin-2, and beta-nerve growth factor 
(b-NGF) (Fig. 2A).

Furthermore, we investigated correlations between 
plasma cytokine levels and the MSSS in NMOSD 
patients. Interestingly, our results indicated a higher 
number of cytokines negatively correlated with MSSS 
than those positively correlated (Table  S2). Specifically, 
cytokines such as osteoactivin, alpha-fetoprotein (AFP), 
CD99, FAP, surfactant protein D (SP-D), and brain-
derived neurotrophic factor (BDNF) displayed strong 
negative correlations with MSSS (Fig.  2B). On the con-
trary, angiogenin, insulin-like growth factor-binding pro-
tein 6 (IGFBP-6), C–C motif chemokine 5 (RANTES), 
thrombospondin-1 (TSP-1), chitinase-3-like protein 
1 (CHI3L1), and dickkopf-3 (Dkk-3) demonstrated 
the most prominent positive correlations with MSSS 
(Fig. 2C).

Alterations of plasma metabolites in NMOSD
To gain insights into the alteration of plasma metabolites 
in NMOSD, we analyzed 630 plasma metabolites using 
targeted metabolomics. We employed liquid chromatog-
raphy-mass spectrometry (LC–MS) for small molecular 
metabolites and flow injection analysis (FIA) for larger 
molecules such as cholesteryl esters, glycerophospholip-
ids, glycerol esters, sphingolipids, and hexoses. The dis-
tinct profiles observed in NMOSD versus the HC group 
were notably separated in the LC–MS mode and in the 
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PC2 dimension of FIA mode (Fig. S2A), indicating signif-
icant alterations in plasma metabolites in NMOSD.

Further analysis of differential metabolites revealed 
increased levels of small molecule metabolites, includ-
ing bile acids (e.g., tauroursodeoxycholic acid [TDCA], 
taurocholic acid [TCA], glycodeoxycholic acid [GDCA], 
glycocholic acid [GCA]), hypoxanthine, lactate (Lac), sar-
cosine, p-Cresol sulfate (p-Cresol-SO4), α-aminobutyric 
acid (AABA), γ-aminobutyric acid (GABA), cysteine 
(Cys), and homocysteine (HCys) in NMOSD patients. 

Conversely, decreases were observed in dehydroepian-
drosterone (DHEAS), homoarginine (HArg), octadeca-
dienoic acid (FA[18:2]), serotonin, and docosahexaenoate 
(DHA) (Fig. 3A).

Lipid-related alterations included an increase in tri-
glycerides (TGs), whereas levels of phosphatidylcholines 
(PCs), cholesterol esters (CEs), ceramides (Cer), and 
hexosylceramides (HexCers) decreased (Fig. S2B). Nota-
bly, various sphingomyelin (SM) subclasses consistently 
decreased in NMOSD, including SM.C16:0, SM.C16:1, 

Fig. 1 Study design and changes of blood immune cell subsets in NMOSD. A Study design. B‑M Box plots representing expression values 
of differential expressed blood immune cell subsets in HC (n = 46) and NMOSD (n = 48), with the central line representing the median, the box 
denoting the interquartile range (IQR), and the whiskers extending to the furthest data point within 1.5 times the IQR from the box. FDR corrected 
q-value: * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.001. mDC, myeloid dendritic cell; pDC, plasmacytoid dendritic cell
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Fig. 3 Changes of plasma metabolites in NMOSD and correlation with disease severity. A Bar plot illustrates the  log2 fold change of LC–MS 
metabolites with significant differential expression between HC (n = 46) and NMOSD patients (n = 47), identified through statistical analysis 
involving linear regression models and FDR correction for multiple comparisons. B Box plots representing expression values of differential expressed 
sphingolipids in HC and NMOSD, with the median and interquartile range shown. FDR corrected q-value: ** P < 0.01, **** P < 0.001. C Bar plot 
displayed enriched pathways of significantly differential expressed LC–MS and FIA metabolites using MetaboAnalyst enrichment analysis. D Scatter 
plots showing small molecular metabolites that have a negative correlation with the MSSS, as determined by spearman analysis
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SM.C18:0, SM.C18:1, SM.C20:2, SM.C24:0, SM.C26:0, 
SM(OH)C14:1, SM(OH)C16:1, SM(OH)C22:1, SM(OH)
C22:2, and SM(OH)C24:1 (Fig.  3B), highlighting these 
metabolites’ reduction in plasma as a significant NMOSD 
feature, potentially useful as diagnostic markers.

Pathway enrichment analysis of differential metabolites 
pointed to significant enrichment in numerous pathways, 
including aminoacyl-tRNA biosynthesis, arginine bio-
synthesis, taurine and hypotaurine metabolism, cysteine 
and methionine metabolism, primary bile acid biosyn-
thesis, starch and sucrose metabolism, and sphingolipid 
metabolism (Fig.  3C). These results implicated the con-
tribution of these altered metabolic pathways to NMOSD 
pathogenesis. Furthermore, correlation analysis between 
differential metabolites and the MSSS showed taurine, 
hippuric acid (HipAcid), creatinine, glutamate (Glu), 
ornithine (Orn), and Lac levels negatively correlated with 
MSSS (Fig. 3D, Table S3). Additionally, negative correla-
tions with MSSS were also noted for lipid metabolites, 
including PCs, TGs, and various sphingolipid subclasses 
(Table  S4), suggesting their potential as biomarkers for 
monitoring NMOSD progression.

Associations among immune cell subsets, cytokines, 
and metabolites
To elucidate the potential interactions among differ-
ential immune cell subsets, cytokines, and metabo-
lites in relationship to the development of NMOSD, we 
conducted Spearman correlation analysis. This analy-
sis identified significant correlations: cytokines such as 
HAI-2, S100A8, and GDF15 were positively correlated 
with monocytes, yet exhibited negative correlations with 
Tregs, DCs, NK cells, and various T cell subtypes. In con-
trast, cytokines including IL-3, DNAX accessory mol-
ecule 1 (DNAM-1), and Cadherin-11 displayed reverse 
correlation patterns (Fig. S3A). Furthermore, the analysis 
extended to correlations between immune cell subtypes 
and metabolites, uncovering that DHEAS, FA(18:2), and 
HArg negatively correlated with monocytes and posi-
tively with Tregs, DCs, NKs, and various T cell subtypes. 
Conversely, metabolites such as hypoxantine, xanthine, 
and methionine sulfoxide (Met-SO) showed positive cor-
relations with monocytes, but negative correlations with 
Tregs, DCs, NKs, and various T cell subtypes (Fig. S3B). 
Sphingolipids (e.g., SM, Cer, HexCer) and PCs displayed 
negative correlations with monocytes and positive cor-
relations with DCs, NKs, and T cell subsets (Th2, Th17, 
 CD28+T,  CD28+CD4T,  CD28+CD8T), whereas TGs 
exhibited the opposite correlation pattern (Fig. S3C). 
These findings suggest intricate functional interac-
tions between varying immune cell subsets and specific 
cytokines or metabolites.

Further, we used the xMWAS integrative analysis to 
contrast the multi-omics interactions between NMOSD 
and HC groups. In the HC group, the analysis selected 
9 immune cell subtypes, 11 cytokines, and 14 metabo-
lites, which were organized into seven communities with 
robust inter-correlations within the integrative network 
(γ ≥ 0.7, P < 0.05) (Fig. 4A and Table S5). In contrast, the 
NMOSD group analysis identified 11 immune cell sub-
types, 54 cytokines, and 14 metabolites, forming ten 
communities with similarly high correlations (Fig. 4B and 
Table S6). Notably, this analysis underscored a significant 
increase in the number of plasma cytokines associated 
with NMOSD, highlighting the critical role of plasma 
cytokines in NMOSD pathogenesis. Moreover, using 
eigenvector delta centrality measure (DCM), we found 
that secreting Treg, Treg, TDCA, resting Treg, glycoche-
nodeoxycholic acid (GCDCA), taurochenodeoxycholic 
acid (TCDCA), hypoxanthine, and GABA showed the 
largest change in eigenvector centrality between NMOSD 
and HC (Fig. 4C). This analysis underscores the impact-
ful roles of Treg subtypes and secondary bile acids in 
NMOSD pathogenesis, demonstrating that immune cell 
subtypes, cytokines, and metabolite communities may 
cooperatively contribute to disease development.

Integrative features discriminating NMOSD from HC
The DIABLO analysis aimed to discern a multi-omics 
signature that could effectively distinguish NMOSD 
from HC. By integrating data on immune cells, metabo-
lites, and cytokines, we identified distinct signatures 
within each category that distinguish NMOSD from 
HC (Fig.  5A–C). Notably, immune cell subtype analysis 
revealed higher proportions of monocytes and effector 
CD8T cells (TE CD8) in NMOSD, whereas HC exhibited 
higher proportions of  CD28+T cells,  CD28+CD4T cells, 
and activated Treg among others (Fig.  5D). In terms of 
metabolites, NMOSD was characterized by higher levels 
of GABA, sarcosine, and AABA in NMOSD, contrasting 
with higher levels of FA (18:2), HArg, DHEAS, SM(OH)
C22:1, SM(OH)C24:1, SM(OH)C22:2, and SM.C24:0 
in HC (Fig.  5E). For cytokine expression, NMOSD was 
marked by higher levels of HAI-2, GDF15, p53-associ-
ated parkin-like cytoplasmic protein (PARC), S100A8, 
and T-cell immunoglobulin mucin receptor 3 (TIM-3), 
while HC had higher levels of SCF, Syndecan-1, and reti-
nol-binding protein 4 (RBP4), among others (Fig. 5F).

Further analysis involved heat-map clustering to vis-
ualize the correlations within the multi-omics signa-
tures differentiating NMOSD from HC. This revealed 
two primary clusters of highly correlated communities 
(γ > 0.5) encompassing immune cell subtypes, metabo-
lites, and cytokines (Fig. 5G). Notably, an elevated sub-
community in NMOSD, featuring elements like GABA, 
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choline, Lac, AABA, S100A8, sarcosine, HAI-2, mono-
cytes, TIM-3, PARC, and GDF15, demonstrated 
strong inter-correlations. Conversely, a subcommu-
nity marked by decreased levels in NMOSD, essential 
for its differentiation from HC, included RBP4, Th17 
cells, Th2 cells,  CD28+T cells,  CD28+CD4T cells, 
CD4T cells, Treg, and activated Treg, displaying close 
connections among its members. This intricate multi-
omics DIABLO analysis provides a deep insight into 
NMOSD’s distinguishing biomarker interactions, illu-
minating the intricate and dynamic interplay essential 
for understanding this disease.

Differences in peripheral characteristics among clinical 
subtypes of NMOSD
To elucidate the clinical heterogeneity of NMOSD, we 
stratified patients based on clinical parameters, includ-
ing the EDSS, AQP4 antibody titer, disease duration, 
number of relapses in the past year, and episode his-
tory (Table  S1). In our analysis, NMOSD patients were 
dichotomized into high and low EDSS score groups 
(EDSS-H, EDSS ≥ 4; EDSS-L, EDSS < 4), high and low 
AQP4 antibody titers (AQP4-H, antibody titer ≥ 100:1; 
AQP4-L, antibody titer < 100:1), by disease duration into 
T1 (< 3  years) and T2 (> 3  years), by relapse frequency 

Fig. 4 Integrative analysis of blood multi-omics data. A Integrative network plot of cytokines, immune cells, LC–MS and FIA metabolites in HC 
group (n = 46) by using xMWAS, correlation higher than 0.7, one color representing one community. B Integrative network plot of cytokines, 
immune cells, LC–MS and FIA metabolites in NMOSD group (n = 34) by using xMWAS, correlation higher than 0.7, one color representing one 
community. C The identification of nodes that undergo network changes, which is determined based on the Delta centrality (importance) measure 
(ECMnmo—ECMcontrol) in which EMC represents eigenvector centrality measure
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into low relapse (LR, no relapses in the past year) and 
high relapse (HR, ≥ 1 relapse in the past year), and finally 
into first episode versus recurrent groups.

Firstly, the comparison between the EDSS-H and 
EDSS-L groups revealed that the former exhibited ele-
vated levels of macrophage inflammatory protein 3a 

Fig. 5 Integrative analysis revealed discriminative features between NMOSD and HC. Omics integration analysis among immune cells, cytokines 
and metabolites. The highly correlated multi-omics signatures that discriminate HC (n = 46) and NMOSD (n = 34) are identified from supervised 
model using DIABLO. A–C scatterplot of samples on first 2 components for each block (Omics), colored by group (blue: HC, orange: NMOSD). 
D–F Loading plot of component 1 from supervised model for each block (omics), important signatures resulted from DIABLO are ordered 
by absolute importance (x-axis), color indicate the class for which the median expression value is the highest for each feature. G Omics integration 
analysis among immune cells, cytokines and metabolites. Heatmap of picked important signatures (of component 1 and 2 from each block) 
with dendrogram computed by Euclidean distance and complete linkage method, high correlations between features (γ > 0.5)



Page 12 of 18Xie et al. Journal of Translational Medicine          (2024) 22:989 

(MIP-3a), GRO (CXCL1), and matrix metalloproteinases 
(MMP-3, MMP-2), and alongside lower levels of IL-10, 
IFN-γ, and IL-7, etc. (Fig. 6A). Notably, there were no dis-
cernible differences in blood immune cell subtypes and 
metabolites between these subgroups.

Next, the analysis of the AQP4-L versus AQP4-H 
groups showed lower levels of secreting Treg in AQP4-
L (Table  S7), alongside significant lower levels in bone 
morphogenetic protein 4 (BMP-4), BDNF, and neuron-
specific enolase (NSE), etc. (Fig. 6B). Metabolomic analy-
sis showed lower levels of ceramides and higher levels of 
asparagine (Asn) and serine (Ser) in the AQP4-L group 
(Table S7).

Comparing T2 and T1 subgroups, the former displayed 
an increased presence of  CD28+CD8T cells, osteopontin 
(OPN), and vascular cell adhesion molecule 1 (VCAM1), 
alongside reduced CA15-3, MIP-3b, neutrophil-activat-
ing protein 78 (ENA-78), FAP, and CCN family mem-
ber 3 (NOV) (Fig.  6C, Table  S8). Metabolic differences 

included elevated glutamine (Gln) with decreased pheny-
lalanine (Phe) and Glu in T2 (Table S8).

In the HR versus LR comparison, the HR group 
had increased levels of resting Treg, endoglin, carci-
noembryonic antigen-related cell adhesion molecule 1 
(CEACAM-1), adiponectin, renin, and matrix extracel-
lular phosphoglycoprotein (MEPE), but lower levels of 
NOV, FAP, Lac, and GLCAS (Fig. 6D, Table S9).

In the comparison between recurrent and first epi-
sodes, recurrent episode was characterized by higher lev-
els of Th17 cells (Table S10), vascular endothelial growth 
factor receptor 2 (VEGF-R2), VCAM1. In contrast, 
markers such as CA15-3, kallikrein-5, ENA-78, and FAP 
were lower (Fig.  6E). Besides, Phe was notably lower in 
recurrent episodes (Table S10).

We examined the distinctions between the relapse and 
remission phases. Our findings indicate that the relapse 
phase is associated with higher levels of memory B cells 
and monocytes, and lower levels of  CD28+CD8T cells 

Fig. 6 Difference in peripheral features between different clinical subgroups. Bar plot of significantly differential expressed cytokines (P < 0.05) 
between EDSS-H (n = 16) and EDSS-L (n = 24) (A), between AQP4-L (n = 17) and AQP4-H (n = 23) (B, between T2 (n = 16) and T1 (n = 24) (C), 
between HR (n = 24) and LR (n = 16) (D), between Recurrence (n = 18) and First episode (n = 22) (E). F The serum level of FAP in first episode (n = 20) 
and recurrence (n = 20) of NMOSD, Student’s t-test, *P < 0.05. G The serum level of FAP in T1 (< 3 years) (n = 27) and T2 (≥ 3 years) (n = 13) of NMOSD, 
Student’s t-test, *P < 0.05



Page 13 of 18Xie et al. Journal of Translational Medicine          (2024) 22:989  

and NK cells compared to the remission phase (Fig. 
S4A). Furthermore, during the relapse, there are elevated 
levels of SP-D and reduced levels of OPN (Fig. S4B), as 
well as increased AABA and decreased citrulline (Cit) 
levels (Fig. S4C). Besides, considering that medication 
might influence peripheral factors, we also assessed 
the effects of different treatments, including glucocor-
ticoids, combinations of glucocorticoids with intrave-
nous immunoglobulin (IVIG), and glucocorticoids with 
immunosuppressants. The analysis indicated no sig-
nificant changes in the proportions of immune cell sub-
types across the groups. Similarly, most cytokines and 
metabolites did not differ significantly among the vari-
ous treatment groups. However, TSP-1 and B7 homolog 
3 (B7-H3) exhibited changes with glucocorticoids com-
bined with intravenous immunoglobulin (IVIG) or with 
immunosuppressants, while p-Cresol-SO4 levels varied 
between the use of glucocorticoids alone and glucocorti-
coids paired with immunosuppressants (Table S11). This 
suggests that these treatments have a minimal impact on 
peripheral factors.

Notably, FAP was differentially expressed in multiple 
clinical subgroups of NMOSD, such as lower expression 
in EDSS-H compared to EDSS-L (Fig.  6A), in T2 com-
pared to T1 (Fig. 6C), in HR compared to LR (Fig. 6D), 
and in the recurrence group compared to the first epi-
sode (Fig.  6E), suggesting its potential as a key marker 
for NMOSD progression. To investigate the link between 
FAP and disease progression, we collected serum sam-
ples from an independent cohort of 40 NMOSD patients, 
equally divided between 20 with first episode and 20 with 
recurrent cases (Table  S12). We used ELISA method to 
measure the serum FAP concentrations and compared 
the levels between the first episode and recurrent cases. 
Our findings showed that patients with recurrent cases 
had significantly lower serum FAP concentrations than 
those experiencing their first episode (Fig.  6F). Further-
more, we found that patients with a long disease duration 
(T2) had lower serum FAP levels compared to those with 
a short duration (T1) (Fig. 6G). These results collectively 
underscore the relevance of FAP as a crucial marker for 
the progression of NMOSD.

Discussion
NMOSD is a debilitating inflammatory disorder of the 
CNS that often leads to irreversible deficits and rapid 
disability progression. AQP4 autoantibodies serve as 
a sensitive and specific marker, facilitating the diagno-
sis of NMOSD. Previous studies showed that median 
serum AQP4-IgG titers are elevated in NMOSD during 
acute attack [7, 27]. However, the variability of AQP4-
IgG levels both within individuals and across different 
cases complicates its utility in predicting relapses or the 

extent of disability [8, 9]. The temporal increase in serum 
AQP4-IgG levels preceding relapses necessitates fre-
quent monitoring, which poses considerable challenge 
[28]. Current therapeutic strategies for NMOSD rely on 
broad-spectrum immunosuppressive treatments, making 
accurate diagnosis crucial to avoiding the inappropriate 
application of these therapies and underscoring the need 
for greater diagnostic precision and a deeper under-
standing of its pathogenesis. Prior investigations into 
NMOSD biomarkers have predominantly adopted singu-
lar approaches, which do not fully capture the complexity 
of the disorder. Our multi-omics analysis—encompass-
ing immune cell subsets, cytokines, and metabolites in 
blood—aims to delineate the peripheral blood alterations 
in NMOSD, offering insights into its pathogenesis and 
identifying biomarkers.

In terms of immune cell subset alterations in NMOSD, 
our findings show an increase in monocytes, which might 
be connected to the inflammatory response involved in 
the development of NMOSD. Tregs play a critical role 
in maintaining immune system balance and preventing 
autoimmune diseases, including suppression of immune 
responses and inflammation, promotion of self-tolerance 
and preventing the development of autoimmune diseases 
[29, 30]. The observed reduction in Tregs and their sub-
types—including activated, secreting, and resting Tregs, 
suggesting a compromised immune suppressive func-
tion of Tregs facilitated the development of NMOSD. 
Additionally, there was a concomitant decrease in DCs, 
including pDC and mDC subtypes, NK cells, and T cells, 
 CD28+T and CD4T cells, implying impaired immune 
surveillance might contribute to NMOSD development. 
Notably, the reduction in NK cells aligns with find-
ings reported in previous NMOSD study [31]. Although 
NMOSD is thought to exhibit show a predilection for the 
Th17 cell subtype [13, 14], our data reveal a significant 
decrease in Th17 cells, this discrepancy might be attrib-
uted to the exhaustion resulting from Th17 overactiva-
tion, but it requires further investigation.

Regarding plasma cytokines in NMOSD, our analysis 
identified notable changes. For instance, the simultane-
ous elevation of S100A8 and GDF15 suggests a perva-
sive peripheral inflammatory response. S100A8 activates 
MAP-kinase and NF-kappa-B signaling pathways 
through its interaction with Toll-like receptor 4 (TLR4) 
and the receptor for advanced glycation end products 
(AGER) [32–35]. Meanwhile, GDF15, a mitogenic factor 
induced by mitochondrial dysfunction and organ dam-
age, mediates tolerance to inflammatory injury, under-
scoring a protective response to mitochondrial damage 
[36, 37]. HAI-2 plays crucial roles in the regulation of 
various biological processes involving regulation of pro-
tease activity and barrier integrity [38, 39], its increase 
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may be a reaction to tissue injury. These findings collec-
tively indicate that systemic inflammation plays a role in 
the pathogenesis of NMOSD. Conversely, reduced levels 
of cytokines related to neurotrophins and survival, such 
as NT-3, b-NGF and SCF, implying a decreased neural 
repair capacity facilitated the development of NMOSD 
[40–43]. Additionally, the decrease in Galectin-2, which 
binds beta-galactoside and possesses antimicrobial, 
antinematode, and anti-inflammatory properties [44–47] 
and plays an important role in the mucosal defense of the 
gastrointestinal tract [48–50], might signify a diminished 
anti-infective and physical barrier function are involved 
in the development of NMOSD.

There were also many changes in plasma metabolites 
in NMOSD. Notably, lactate was dramatically elevated in 
NMOSD, aligning with previous finding [18]. Dysregu-
lations were also evident in bile acid metabolism, with 
elevations in both primary (TCA and GCA) and cyto-
toxic secondary bile acids (TDCA and GDCA)—metabo-
lites modified by gut microbiota [51, 52]. Changes in gut 
microbiota and its metabolite bile acids have been closely 
linked to the pathogenesis of NMOSD [53, 54], and our 
findings further support the involvement of aberrant bile 
acid pathways in the development of NMOSD. Further-
more, the rise in p-Cresol-SO4, a neurotoxic and geno-
toxic substance produced by gut microbiota, suggests 
its role in the pathogenesis of NMOSD [55]. An imbal-
ance was also noted between elevated homocysteine, 
associated with vascular injury, and decreased protec-
tive vascular markers such as HArg, FA(18:2), and DHA, 
suggesting that potential vascular dysfunction may be 
involved in the development of NMOSD [56]. Addition-
ally, a decline in DHEAS, a neuroprotective steroid [57, 
58], suggests the compromised neuroprotective function 
may have contributed to the development of NMOSD.

Our correlation analysis of peripheral blood alterations 
and MSSS scores, as well as comparison of immune cell 
subsets, cytokines, and metabolites across NMOSD sub-
types, identified distinct peripheral markers. Notably, 
FAP emerged as a significant marker, with levels inversely 
related to MSSS and EDSS scores and lower in recurrent, 
longer-duration, and high-relapsed cases, which was 
validated in an independent cohort with lower levels in 
patients with recurrent episodes and those with a longer 
disease duration. FAP, a serine protease involved in tissue 
remodeling and immunosuppression [59–61], is typically 
associated with activated fibroblasts in tumor microenvi-
ronments [62] but also appears in the CNS under neuro-
inflammatory conditions [63–66]. The observed decrease 
in FAP expression, indicating reduced immunosuppres-
sive and tissue repair capabilities, might contribute to 
the progression of NMOSD. Additionally, various other 
molecules showed significant correlations with MSSS. 

Osteoactivin, crucial for tissue repair, anti-inflamma-
tion, and neuroprotection [67, 68], and AFP, with known 
immunosuppressive effects during pregnancy, autoim-
munity, and cancer [69], displayed negative correlations 
with MSSS, suggesting their involvement in the weaken-
ing of immunosuppressive and neuronal repair mecha-
nisms that contribute to the development of NMOSD. 
Similarly, SP-D and BDNF, crucial for immune defenses 
and neuronal functions [70–73]. Conversely, proteins 
like angiogenin, IGFBP-6, RANTES, TSP-1, CHI3L1, 
and Dkk-3, which are implicated in neovascularization, 
inflammation, and tissue remodeling [73–81], showed 
positive correlations with MSSS, suggesting their involve-
ment in the progression of NMOSD.

To identify a multi-omics signature distinguishing 
NMOSD from HC, DIABLO analysis was performed. 
This analysis revealed distinct omics-specific signatures 
that effectively separate NMOSD from HC, underscor-
ing the multifaceted nature of this disease. The findings 
highlighted not only clear distinctions but also highly 
correlated communities among immune cell subtypes, 
metabolites, and cytokines, illustrating the intricate inter-
play within these biomolecular networks. Furthermore, 
Spearman correlation and xMWAS integrative analyses 
delineated the potential interactions among these com-
ponents, emphasizing their collaborative impact on the 
pathogenesis of NMOSD. Particularly notable is the sig-
nificant role of Treg subtypes and secondary bile acids.

However, our study has several limitations. First, it did 
not account for patients with other neurological disor-
ders that require precise differential diagnoses, such as 
MS, Myelin Oligodendrocyte Glycoprotein Antibody-
Associated Disease (MOGAD), and Acute Disseminated 
Encephalomyelitis (ADEM). Future research should 
explore these distinctions to identify unique periph-
eral characteristics and potential biomarkers specific 
to NMOSD compared to other diseases. Second, our 
analyses did not consider potential confounding fac-
tors, including dietary patterns, or genetic predisposi-
tions, which could influence the results. Third, given 
the rarity of NMOSD, our study’s sample size was ade-
quate but limited. Larger, multicenter and independent 
cohort studies are necessary to validate our findings and 
enhance the robustness of the results, Fourth, while our 
subgroup comparisons provided detailed insights into 
NMOSD, these findings must be validated through lon-
gitudinal studies to confirm their implications over time. 
Fifth, our sample comprised exclusively individuals from 
China; thus, findings might vary with a geographically 
diverse pool. The influence of ethnic and regional varia-
tions on NMOSD should be considered in future studies. 
Finally, our data is association study that does not imply 
a causal relationship, the functional implications of our 
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findings require validation through animal studies and 
in vitro experiments.

Conclusions
In summary, our multi-omics approach successfully 
captures the nuanced alterations in peripheral blood 
immune cell phenotypes, cytokines, and metabolites 
associated with NMOSD. By establishing distinct dis-
criminative signatures differentiating NMOSD from HC, 
this study has laid groundwork for future endeavors in 
biomarker discovery, therapeutic target development, 
and deeper understanding of disease pathogenesis. Nota-
bly, the identification of plasma FAP as a key biomarker 
highlights its potential importance in clinical applica-
tions and research. Our findings emphasize the need for 
further studies to elucidate the complex mechanisms by 
which the identified immune cell subsets, cytokines, and 
metabolites contribute to the pathogenesis of NMOSD, 
ultimately aiming to enhance diagnostic precision and 
therapeutic efficacy.
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