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Single‑cell and bulk transcriptome analysis 
reveals tumor cell heterogeneity and underlying 
molecular program in uveal melanoma
Ke Li1,2, Jingzhe Huang1,2, Ying Tan1,2, Jie Sun1,2*    and Meng Zhou1,2*    

Abstract 

Background  Uveal melanoma (UM) is a rare and deadly eye cancer with high metastatic potential. Despite the pre-
dominance of malignant cells within the tumor microenvironment, the heterogeneity and underlying molecular 
features remain to be fully characterized.

Methods  We analyzed single-cell transcriptomic profiling of 37,660 malignant cells from 17 UM tumors. A consen-
sus non-negative factorization algorithm was used to decipher transcriptional programs underlying tumor cell-
intrinsic heterogeneity. Tumor-infiltrated immune cells were computationally estimated from bulk transcriptomes 
and bioinformatics methods. A gene signature was derived for subtyping and prognostic stratification and validated 
in multicenter cohorts.

Results  ScRNA-seq analysis revealed the existence of diverse subpopulations and transcriptional variability 
among malignant cells within and between tumors. Furthermore, we observed that the heterogeneity of malignant 
cell states and compositions correlated with genomic, immunological, and clinical characteristics. By identifying gene 
expression programs associated with malignant cell heterogeneity at the single cell level, UM samples were classi-
fied into two distinct intra-tumoral subtypes (ITMHlo and ITMHhi) with different prognoses and immune microenvi-
ronments. Finally, a machine learning-derived 9-gene signature was developed to translate single-cell information 
into bulk tissue transcriptomes for patient stratification and was validated in multicenter cohorts.

Conclusions  Our study provides insight into understanding the intra-tumoral heterogeneity of UM and its potential 
impact on patient stratification.

Keywords  Uveal melanoma, Single-cell RNA sequencing, Intra-tumoral heterogeneity

Background
Uveal melanoma (UM) is a  rare intraocular  malignancy 
that arises from the melanocytes in the uveal tract of the 
eye and is the most common primary eye cancer in adults 
[1, 2]. UM is a relatively rare but deadly cancer with a 
1-year overall survival of approximately 50% in meta-
static patients [3, 4]. Although the most commonly used 
first-line treatment options, such as surgery, radiotherapy 
and enucleation, have improved  local  disease  control of 
primary tumors, almost 50% of UM patients eventually 
develop metastases with no or limited curative treatment 
to improve survival [5, 6].
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The clinical challenges posed by UM highlight the need 
to understand the complex behavior of this tumor. As 
a hallmark of tumor evolution and progression, intra-
tumoral heterogeneity (ITH) has previously been recog-
nized as a common feature of most solid tumors, but also 
exhibited cancer type-specific patterns [7–11]. Single-
cell technologies have provided unprecedented oppor-
tunities to decipher tumor heterogeneity at the cellular 
level, revealing molecular and phenotypical heterogene-
ous cancer cell populations within individual tumors at 
unprecedented depth in several cancer types [12–15]. 
Emerging evidence has indicated that tumor cell ITH and 
its complex crosstalk with other critical cellular compo-
nents of the tumor microenvironment (TME) is a crucial 
mechanism underlying tumor development, progression, 
metastasis and occurrence, and contributes to patient 
prognosis, treatment response, and drug resistance 
[14, 16–18], thus posing a significant clinical challenge 
for  effective  and  personalized  cancer patient manage-
ment. However, the ITH of cancer cells at the single-cell 
level and its impact and clinical implications for UM 
remain largely uncharacterized.

Here, we performed an integrated analysis of single-cell 
RNA sequencing (scRNA-seq) and bulk transcriptome to 
characterize intratumoral diversity and heterogeneity of 
UM malignant cells, and further underlined their corre-
lations with molecular, biological and clinical features in 
large patient cohorts. Finally, we identified a gene signa-
ture involved in malignant cell heterogeneity that refines 
the clinically distinct intrinsic subtypes of UM using 
machine learning. Our study shed insights into the mul-
ticellular ecosystem of UM and would have implications 
for risk stratification and personalized treatment.

Materials and methods
Single‑cell transcriptome data and analysis
ScRNA transcriptome data (10X Genomics) from 17 
patients were collected from Durante et al. [19] and Pan-
diani et al. [20] under the accession numbers GSE139829 
and GSE138665 in the Gene Expression Omnibus (GEO).

The scRNA-seq data were processed and analyzed 
using the Seurat R package (v4.0.0) [21]. Unless otherwise 
stated, functions are executed using default parameters. 
The scRNA-seq data of all 17 UM patients from two 
cohorts were integrated into an aggregate Seurat object 
using the merge function of the Seurat package. High-
quality cells with > 200 genes detected and less than 10% 
of transcripts derived from mitochondria were selected 
for further analysis. To remove doublet events in the 
scRNA-seq data, the DoubletFinder R package (v2.0.3) 
was used to identify 1681 doublets (3.1% doublet rate). 
The SCTransform method was used to perform normali-
zation  and  variance  stabilization  of scRNA-seq datasets 

with regression for mitochondrial content. A total of 
3000 highly variable genes were generated after rank-
ing by residual variance of each gene, and used to per-
form PCA dimension reduction. The first 30 significant 
principal components were further summarized to con-
struct SNN graph clustering (resolution = 2) to iden-
tify distinct cell clusters, which were illustrated using 
t-distributed Stochastic Neighbourhood Embedding 
(t-SNE). Batch effects between patients were minimized 
using the harmony method in the Harmony R package 
(v1.0) [22]. We defined  the  identity  of  each  cell  cluster 
according to the expression of well-known cell mark-
ers: Tumor cells (MLANA, MITF), T/ NK cells (CD3D, 
CD3E), B/ plasma cells (MS4A1, CD38, SDC1), myeloid 
cells (C1QA, CD14, CD68), Fibroblasts (DCN, C1R, 
C1S), Endothelial cells (PECAM1, CLDN5, CD34), 
Photoreceptor cells (RCVRN). Differentially expressed 
genes (DEGs) between major cell types were identified 
using the FindAllMarkers function in Seurat with the 
Wilcoxon rank sum test and Bonferroni correction, and 
DEGs with log2(fold change) > 0.58 and FDR < 0.05 were 
retained.

Scoring of T cell properties
The exhaustion, immunosuppression and cytotoxicity 
signatures for quantifying T-cell properties were col-
lected from Zheng’s study [23]. We evaluated the signa-
ture scores for each T cell using the AddModuleScore 
function in Seurat.

Pseudotime trajectory analysis
Monocle (v2.16.0) R package was used to analyze the cel-
lular trajectory to discover the state transitions of tumor 
cells [24]. The reduceDimension function was used to 
reduce dimensions using the DDRTree method. Results 
were visualized in two-dimensional space using the plot_
cell_trajectory function and annotated with pseudotime.

SCENIC analysis
SCENIC analysis was performed using the SCENIC R 
package (v1.2.2) to reconstruct the gene regulatory net-
work [25]. The count matrix from Seurat was imported 
and filtered with the defined threshold (minCountsPer-
Gene = 0.03 * ncells and minSamples = 0.01* ncells). 
Potential TF targets were identified using GENIE3 and 
GRNBoost methods with hg19-500  bp-upstream-7spe-
cies.mc9nr.feather and hg19-tss-centered-10  kb-7spe-
cies.mc9nr.feather cisTarget databases. TF activities and 
active TFs were determined by AUCell.

CNV estimation from scRNA‑seq
Copy number variations (CNVs) of tumor cells for each 
UM sample were inferred from scRNA-seq data using 
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InferCNV (v1.4.0; https://​github.​com/​broad​insti​tute/​
infer​CNV). The count matrix from Seurat was imported. 
To obtain high-quality T cells (non-malignant cells) as 
baselines to infer the CNVs of tumor cells, only T cells 
without expression of MLANA, PMEL, MITF and DCT 
were considered. The cutoff was set to 0.1 and other 
parameters were default values. To define genomic heter-
ogeneity, we first calculated the CNV score of each tumor 
cell by the quadratic sum of CNV region—1, and then we 
averaged the CNV score of tumor cells for each patient to 
represent the genomic heterogeneity of UM patients.

Bulk transcriptome data and analysis
Bulk RNA-seq data of 80 UM tumors and corresponding 
clinicopathological information were downloaded from 
UCSC Xena (GDC TCGA-UM cohort) (https://​xenab​
rowser.​net/​datap​ages/). Gene expression levels were nor-
malized to FPKM values and transformed log2(fpkm + 1). 
Three bulk microarray data of 120 UM tumors and corre-
sponding clinicopathological information were retrieved 
from GEO, including 63 samples from Laurent’s study 
(accession number GSE22138) [26], 29 samples from 
Gangemi’s study (accession number GSE27831) [27] 
and 28 samples from van Essen’s study (accession num-
ber GSE84976) [28]. Raw microarray data profiling by 
Affymetrix  Human  Genome  U133  Plus  2.0  Array was 
normalized with the Robust Multichip Average (RMA) 
method. Processed gene expression data based on Illu-
mina HumanHT-12 V4.0 expression beadchip were pro-
vided [27].

Genomic mutation analysis
Somatic mutations and copy number alterations (CNAs) 
of UM tumors were downloaded from TCGA (https://​
portal.​gdc.​cancer.​gov/). Significant amplification or dele-
tion of genes was identified using GISTIC 2.0 algorithm 
with q values < 0.2 based on CNV data in the TCGA-UM 
cohort [29]. The landscape of CNV patterns and statis-
tically significant cytobands was visualized using the 
Integrative Genomics Viewer (IGV) [30]. The fraction 
of genome altered (FGA) was calculated by adding the 
length of specified copy-number segments (|values|> 0.1) 
and then dividing by the genome length covered.

Deciphering transcriptional programs underlying tumor 
cell‑intrinsic heterogeneity
We applied a consensus  non-negative matrix factoriza-
tion (NMF) algorithm to decipher transcriptional pro-
grams underlying tumor cell-intrinsic heterogeneity from 
17 UM samples [31]. For each sample, we first filtered 
genes (expressed < 5% tumor cells) and low-quality cells 
(< 1000 genes/cell) and applied NMF to each expression 
count matrix. We set k = 3:10 as the factor number and 

selected the optimal k value for each patient, which effec-
tively decomposed the expression matrix. A total of 88 
signatures were identified in 17 tumors. To investigate 
the common features among these signatures, we calcu-
lated the Pearson correlation coefficients according to the 
cell scores of each signature and then clustered them into 
common programs using hierarchical clustering, which 
revealed five prevalent expression programs in UM 
tumors. For each common program, we combined the 
top 100 genes of each signature in this program, and then 
calculated the average loadings of each gene. We kept 
the original loadings for each unique gene and added the 
total loadings for duplicated genes. For each gene, we 
divided the loading by the gene number of this program. 
Finally, the top 30 genes ranked by loadings were defined 
as the signature of this expression program. We evaluated 
the program enrichment degree in each tumor cell based 
on the program signatures using the AddModuleScore 
function in Seurat.

Cell–cell communication analysis
The cell–cell communication network was inferred from 
scRNA-seq data using the CellChat R package (v1.1.1) 
according to canonical ligand-receptor pairs [32].

Computational estimation of tumor‑infiltrated immune 
cells from bulk transcriptomic data
The composition of tumor-infiltrating immune cells was 
estimated computationally from bulk transcriptomic data 
using CIBERSORT in the IOBR R package (v0.99.9) and 
ssGSEA [33].

Identification of ITMH‑related DEGs
ITMH-related DEGs were identified for malignant cells 
between ITMHhi and ITMHlo tumors using the Find-
Markers function in the Seurat R package with the Wil-
coxon Rank Sum test and Bonferroni correction. DEGs 
were filtered using the following criteria: the gene 
expressed in at least 60% of cells in the more abundant 
group; log2(fold change) > 0.58 and FDR < 0.05.

Generation of a 9‑gene signature for tumor cell‑intrinsic 
subtype determination
To develop a clinically applicable gene expression signa-
ture, we conducted the multistep analysis as follows: (1) 
univariate Cox proportional hazards regression for over-
all survival was used to examine the prognostic value 
of each ITMH-related DEG, and only ITMHlo-specific 
genes with a hazard ratio < 1 or ITMHhi-specific genes 
with a hazard ratio > 1 were retained for further analysis; 
(2) When two genes showed a high correlation (> 0.8), 
we assessed the mean absolute correlation of each gene 
and eliminated the gene with the highest mean absolute 

https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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correlation, and performed feature selection for above-
selected genes via recursive feature elimination method. 
The external resampling method was set to “CV”, with the 
returnResamp parameter set to “final”; (3) Identify valua-
ble features using XGBoost, and train an XGBoost classi-
fier for subtype determination in the TCGA-UM cohort, 
which was validated in multicenter independent cohorts. 
Parameters were set as eta = 0.3, max_depth = 10, and the 
maximum number of boosting iterations was set to 1000.

Statistical analysis
All statistical analyses were performed in R (v4.0.3) on 
the R studio interface (v1.3.959). Wilcoxon rank sum test 
or Kruskal–Wallis test was used to compare differences 
between groups. Univariate and multivariate Cox pro-
portional hazard regression models were used to deter-
mine the association between variables and survival. The 
Kaplan–Meier method and the log-rank test were used to 
calculate survival differences between different subtypes. 
Hazard ratios (HR) with 95% confidence intervals (CI) 
and p values for each variable were visualized using the 
forestplot R package (v1.10.1).

Results
ScRNA‑seq analysis revealed transcriptional heterogeneity 
of malignant cells within and between UM tumors
Our study incorporated scRNA-seq data of 17 UM 
tumors from two cohorts. After quality control and 
doublet removal, 51464 high-quality single cells were 
retained for subsequent analyses. After principal com-
ponent analysis and batch effect correction, t-SNE visu-
alization revealed that single-cell transcriptomes from 
different patients were intermixed, indicating minimal 
batch effects (Supplementary Fig.  1a). To uncover the 
cellular composition of UM, we clustered and identi-
fied seven major cell types, including malignant cells, 
photoreceptor cells, endothelial cells, fibroblasts, T/
NK cells, B/plasma cells and myeloid cells, based on 
their canonical cell marker genes (Fig.  1a–c). We con-
ducted differential expression analysis and Spearman’s 
correlation to identify the relationship between clusters 
based on their top 10 cluster-specific genes. Our results 
revealed several association groups that were consist-
ent with our annotation findings (Fig.  1d). Notably, all 

malignant clusters demonstrated a high degree of simi-
larity, but were divided into different submodules, indi-
cating the transcriptional diversity of malignant cells. To 
further investigate this heterogeneity, we analyzed the 
transcriptomes of 37,660 malignant cells and categorized 
them into 19 clusters (Fig.  1e). Interestingly, although 
patient-specific malignant cells were observed, malig-
nant cells from the same patient were also mapped into 
different malignant cell subclusters, implying the intra-
tumoral transcriptomic heterogeneity of malignant cells 
within the same tumor (Fig. 1f–g). We used the diversity 
score proposed by Ma et al. (13) to quantify the ITH of 
malignant cells in the TME for a sample. We respectively 
imported different PCAs as input for the calculation and 
found that the number of PCAs had little effect on the 
patient ranking of the diversity scores (Supplementary 
Fig.  1b), indicating the robustness and reliability of the 
diversity scores. We then divided 17 patients into two 
groups with high (ITMHhi tumors, n=8) and low intra-
tumoral malignant cell heterogeneity (ITMHlo tumors, 
n=9) using the median diversity scores as the cutoff. 
ITMHhi tumors had significantly higher diversity scores 
than ITMHlo tumors (Wilcoxon test, p = 8.2e-05) (Sup-
plementary Fig.  1c). These two subtypes corresponded 
to different clinical behaviors, with ITMHhi tumors 
exhibiting larger tumor diameter, mixed histopathologi-
cal features, GEP class 2 subtype and higher metastatic 
risk (Supplementary Fig. 1d). Furthermore, t-SNE plots at 
both single-cell and patient level revealed a distinct dis-
tribution of ITMHhi and ITMHlo, confirming the intrinsic 
transcriptional heterogeneity of intra-tumoral malignant 
cells (Supplementary Fig. 1e–f). We also performed pseu-
dotime trajectory analysis using Monocle and observed a 
tumor cell evolutionary trend from ITMHlo tumor cells 
to ITMHhi tumor cells (Fig. 1h) .

Single‑cell analysis of ITMH‑defined tumor cell‑intrinsic UM 
subtypes with different clinical phenotypes and outcomes
We conducted differential expression analysis of malig-
nant cells between ITMHhi and ITMHlo tumors to 
identify expression signatures related to malignant 
cell heterogeneity (Fig.  2a, Supplementary Table  1). 
120 ITMH-related DEGs were identified, consisting 
of 78 ITMHhi-specific genes and 42 ITMHlo-specific 

(See figure on next page.)
Fig. 1  ScRNA-seq analysis revealed transcriptional diversity of malignant cells within and between UM tumors. a t-SNE visualization of 51464 
cells from 17 UM patients, colored by clusters. b Dot plot of representative cell markers among each cluster; dot size represents abundance, 
and color represents expression level. c t-SNE visualization of 51464 cells from 17 UM patients, colored by main cell types. d Heatmap of Spearman’s 
correlations among each cluster. e t-SNE visualization of 37660 tumor cells from 17 UM patients, colored by clusters. f t-SNE visualization of 37660 
tumor cells from 17 UM patients, colored by the patient. g Sankey diagram showing the association between malignant cell subclusters and UM 
patients. h Differentiation trajectory of tumor cells inferred by Monocle, and colored by pseudo time (top) and ITMH subtype (bottom)
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genes. Pathway enrichment analysis revealed that 
ITMHhi-specific genes were overrepresented in pathways 
related to stress responses, Blood vessel morphogenesis, 
cell death and cell proliferation, whereas ITMHlo-specific 
genes were predominantly enriched in cellular biosyn-
thetic processes and aerobic respiration (Fig. 2b). To gain 
further insight into the metabolic alterations associated 
with increasing ITMH, we measured the level of enrich-
ment for each metabolic pathway in KEGG. Our results 
revealed that oxidative phosphorylation and glycolysis 
were differentially upregulated in ITMHlo and ITMHhi 
tumors, respectively, indicating a marked shift in meta-
bolic profiles (Supplementary Fig.  2a). We then applied 
our data to bulk tissue cohorts and observed a negative 
correlation between the expression of ITMHhi-specific 
genes and that of ITMHlo-specific genes in UM patients, 
indicating the existence of highly variable intra-tumoral 
malignant cell heterogeneity (Supplementary Fig. 2b).

We then evaluated the scaled t-test statistic values 
of the expression levels of ITMH-related genes in each 
patient as the ITMH score, categorizing UM patients into 
two distinct ITMH subtypes. Specifically, the ITMHhi 
subtype (n = 43, ITMH score > 0) comprised of highly 
heterogeneous malignant cells characterized by high 
expression of ITMHhi-specific gene signature and low 
expression of ITMHlo-specific gene signatures, whereas 
the ITMHlo subtype (n = 37, ITMH score < 0) was com-
posed of malignant cells with low heterogeneity char-
acterized by high expression of ITMHlo-specific gene 
signature and low expression of ITMHhi-specific gene 
signatures (Fig.  2c). Finally, we investigated the impact 
of transcriptional heterogeneity on patient outcome and 
found that both overall survival (OS) and progression-
free survival (PFS) were significantly worse in patients 
with the ITMHhi subtype than in those with the ITMHlo 
subtype (HR = 10.94, 95% CI 10.32–11.57, p = 0.00013 
for OS and HR = 52, 95% CI 21–130, p = 0.0018 for PFS, 
Fig. 2d, Supplementary Fig. 2c). Additionally, we verified 
our findings in an additional cohort (Laurent’s cohort), 
in which 63 patients were stratified into ITMHhi and 
ITMHlo subtypes, and significant differences in overall 

survival were observed (HR = 2.82, 95% CI 2.47–3.18, 
p = 0.0016) (Fig.  2e-f ). Finally, multivariate Cox regres-
sion analysis demonstrated that ITMH classification and 
ITMH score were reliable predictors of survival, inde-
pendent of clinical/histopathological variables (ITMH 
classification: ITMHhi versus ITMHlo: HR = 3.4, 95% 
CI 1.1–11, p = 0.037 for TCGA-UM cohort; HR = 3.7, 
95% CI 1.4–10, p = 0.0085 for Laurent’s cohort; ITMH 
score: HR = 2.2, 95% CI 1.2–3.9, p = 0.011 for TCGA-UM 
cohort; HR = 1.8, 95% CI 1.1–2.9, p = 0.014 for Laurent’s 
cohort) (Fig. 2g, Supplementary Fig. 2d). We next inves-
tigated the association between ITMH subtypes and pre-
viously defined GEP class as well as SCNA cluster. Our 
results demonstrated that UM patients from different 
GEP classes or SCNA clusters could be further classi-
fied into different ITMH subtypes, and we found a clear 
survival difference between ITMHhi and ITMHlo patients 
within GEP class 2 patients (median survival 29.1 months 
vs. 46.5  months), indicating that our ITMH subtypes 
can further stratify risk for previously defined subtypes 
(Fig. 2h, Supplementary Fig. 2e). Collectively, single-cell 
and bulk data analyses showed the clinical relevance of 
intra-tumoral malignant cell transcriptional heteroge-
neity with patient prognosis. The single-cell expression 
signature of malignant cell heterogeneity can robustly 
identify malignant cell-intrinsic subtypes from bulk 
tumor transcriptomes.

Molecular characteristics correlated with intra‑tumoral 
malignant cell heterogeneity
To investigate whether the genomic features of malignant 
cells differed between ITMHhi and ITMHlo tumors, we 
analyzed the inferred CNVs for each malignant cell at the 
single-cell level. We found that genomic heterogeneity, 
calculated from inferred CNVs, was significantly asso-
ciated with transcriptomic heterogeneity, with greater 
genomic instability observed in malignant cells from 
ITMHhi tumors (Supplementary Fig.  3a). In addition, 
we observed frequent deletions of chromosome 3 and 
gains of chromosome 8 in malignant cells from ITMHhi 
tumors compared to those from ITMHlo tumors (Fig. 3a). 

Fig. 2  Single-cell analysis defined tumor cell-intrinsic UM subtypes with different clinical phenotypes and patient outcomes. a Volcano plots 
showing the differentially expressed genes (DEGs) of malignant cells between ITMHhi and ITMHlo tumors. b Visualization of functionally categorized 
networks with enriched Gene Ontology (GO) terms as nodes, the node size denotes the enrichment significance. c Heatmap showing the relative 
expression of ITMHhi-specific genes and ITMHlo-specific genes in the TCGA-UM cohort. The landscape of clinical characteristics among different 
subtypes is shown at the top. d Kaplan–Meier survival plot of overall survival between two ITMH subtypes in the TCGA-UM cohort. Statistical 
difference was calculated by log-rank test. e Heatmap showing the relative expression of ITMHhi-specific genes and ITMHlo-specific genes 
in Laurent’s cohort. f The Kaplan–Meier overall survival plot between ITMH subtypes in Laurent’s cohort. Statistical difference was calculated 
by log-rank test. g Forest plots showing hazard ratio (HR) with 95% confidence intervals (CI) and p-values calculated by Cox regression analyses 
in multivariate analyses adjusted for clinical characteristics in TCGA and Laurent’s cohorts. h Sankey diagram showingthe association between ITMH 
subtypes and previously defined molecular subtypes

(See figure on next page.)
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Further validation analysis was performed in an inde-
pendent TCGA-UM cohort, which revealed that ITMHhi 
patients were associated with a higher proportion of 
genome altered (FGA) (Supplementary Fig.  3b). Com-
pared to ITMHlo patients, copy loss of chromosomes 3, 
6q, 8p and 16q, and copy gain of chromosomes 4p and 8q 
were observed in ITMHhi patients (Fig.  3b). Gene-level 
analysis showed the enrichment of ITMHhi-specific genes 
identified from scRNA-seq in chromosome 8q (Fig. 3b), 
suggesting that the transcriptomic features of tumor 
cells in ITMHhi tumors may be partly due to copy gain of 
chromosome 8q. GISTIC analysis identified a prominent 
loss peak at 3q28, which included several known GEP 
class 2 downregulated signatures (FXR1, EIF1B, ROBO1, 
LMCD1, SATB1) and BAP1, a gene previously shown 
to facilitate suppressive immune responses [34–36]. As 
genomic mutations in tumors have been strongly asso-
ciated with intra-tumoral malignant cell heterogeneity 
[37], we illustrated the landscape of commonly mutated 
genes between ITMHlo and ITMHhi patients (Fig.  3c). 
SF3B1, EIF1AX and SF3B3 were frequently mutated in 
ITMHlo patients and were previously associated with 
improved survival and reduced metastatic risk [38, 39]. 
In contrast, five significantly mutated genes were identi-
fied in ITMHhi patients, including CYSLTR2 and TYRO3, 
which have been implicated in tumorigenesis, tumor cell 
survival, proliferation, and metastasis in several cancers 
[40, 41]. These results suggest that ITMH in UM is sig-
nificantly associated with aberrant genomic aberrations.

To gain deeper insights into the transcriptomic pro-
grams associated with intra-tumoral malignant cell 
heterogeneity, we used consensus non-negative matrix 
factorization (NMF) to identify coherent gene sets pref-
erentially co-expressed by individual cells across 17 
tumors in the scRNA-seq cohort. This analysis yielded 
88 gene signatures, which were subjected to hierarchical 
clustering to reveal five distinct transcriptomic programs 
with discrete biological functions (Fig.  3d). Program-1 
was involved in oxidative phosphorylation (UQCRQ, 
NDUFA4, COX6C), and program-2 was characterized 
by immediate early genes (FOSB, JUNB, FOS), activated 
by different stimuli and stress responses. Program-3 was 

enriched in mitochondrial genes, while program-4 was 
associated with immune response, with upregulation 
of MHC genes (HLA-A, HLA-B, HLA-C). Program-5 
included hypoxia-related genes (GAPDH, LDHA, ENO1) 
and may be hypoxia-dependent (Fig.  3e). We further 
quantified the program activity in each UM tumor by 
calculating the program enrichment scores, and exam-
ined the dependency between transcriptomic programs 
and heterogeneity of intra-tumoral malignant cells. 
We observed a strong association between stress (pro-
gram-2) and immune response (program-4) in ITMHhi 
tumors, while ITMHlo tumors displayed characteristics of 
a mitochondrial-enriched program (program-3) (Fig. 3f ). 
These findings were confirmed in the TCGA-UM cohort, 
where ITMHhi patients showed significantly higher pro-
gram scores of program-2 and program-4, and ITMHlo 
patients showed enhanced program-3 scores (Fig. 3g).

Relationship of intra‑tumoral malignant cell heterogeneity 
with immune microenvironment reprogramming
To assess whether the heterogeneity of intra-tumoral 
malignant cells could reshape the immune-associated 
characteristics and cell composition within the TME, 
we performed a detailed analysis of immune cell types, 
including T/NK cells, myeloid cells, and B/plasma cells in 
UM. We re-clustered and identified five distinct subsets 
of T/NK cells (CD4 T, CD8 Tex, Prol Tex, NK and Treg), 
three subsets of myeloid cells (TAM, monocytes and DC) 
and two cell subsets of B/plasma (Fig. 4a, Supplementary 
Fig. 4a).

Our analysis revealed that the differences in the 
immune microenvironment between ITMHlo and 
ITMHhi tumors were mainly derived from infiltrat-
ing changes in T cells. As shown in Fig.  4b, ITMHhi 
tumors exhibited higher infiltration of CD8 Tex, Prol 
Tex and Treg cells, with increased levels of exhaustion 
and immunosuppression scores (Fig.  4b, c), indicating 
a highly immunosuppressed tumor microenvironment 
with weak T cell-mediated killing capacity in ITMHhi 
tumors. In contrast, TAM infiltration levels did not 
differ significantly between the two subtypes, but 
their functions and characteristics were altered. We 

(See figure on next page.)
Fig. 3  Molecular characteristics correlated with malignant cell heterogeneity. a The landscape of large-scale copy number variations (CNVs) 
in the single-cell cohort inferred by inferCNV. b The landscape of large-scale copy number variations (CNVs) in the TCGA-UM cohort is shown 
at the top, the distribution of ITMHhi and ITMHlo-specific genes in the chromosome locus is shown in the middle, the GISTIC analysis of copy 
number gain and loss of ITMHhi and ITMHlo tumors are shown at the bottom. c The landscape of frequently mutated genes between ITMHhi 
and ITMHlo tumors, respectively. d Heatmap showing the correlation of all 88 signatures determined from the cNMF algorithm, 5 highly correlated 
expression programs are highlighted. e Top enriched pathways of 5 tumor expression programs. f Spearman correlation between diversity 
score and enrichment score of 5 tumor expression programs. g Box plots showing the differences in program score between two subtypes 
in the TCGA-UM cohort; each box indicates the interquartile range between the 25th and 75th percentiles. Statistical difference was calculated 
by the Wilcoxon rank-sum test



Page 9 of 15Li et al. Journal of Translational Medicine         (2024) 22:1020 	

observed enrichment of glycolysis and cell adhe-
sion molecules in ITMHhi tumors, suggesting meta-
bolic activation and reduced TNFa signaling via nfkb, 

cytokine receptor interaction and toll-like receptor 
signaling pathways, which are associated with inflam-
mation and  innate immune responses (Supplementary 

Fig. 3  (See legend on previous page.)
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Fig.  4b). To validate our findings, we performed com-
putational immune composition estimation using CIB-
ERSORT and ssGSEA on the TCGA bulk transcriptome 
data, which confirmed the enrichment of these T cell 
subsets (Fig. 4d).

We used the SCENIC method to identify the key 
transcription factor (TF) responsible for inducing 
the reprogramming of T cell phenotypes in ITMHhi 
tumors. Our results revealed that ITMHhi-derived T 
cells exhibited activated signal transducer and activator 
of transcription 1 (STAT1), with significant upregula-
tion in Treg, CD8 Tex, and Prol Tex (Fig. 4e). Aberrant 
activation of STAT1 has been identified in several 
human cancers, demonstrating its ability to upregulate 
numerous cytokines and chemokines and contribute to 
an immunosuppressive TME [42–44]. It can, therefore, 
be inferred that reprogramming of STAT1 induces the 
immunosuppressive TME observed in the ITMHhi sub-
type. To further investigate intercellular interactions in 
the immune microenvironment, we inferred putative 
cell-to-cell interactions based on ligand-receptor sign-
aling from scRNA-seq data. We found that malignant 
cells from ITMHhi tumors exhibited more outgoing 
interactions than those from ITMHlo tumors (Fig.  4f ). 
We further used CellChat to investigate the interac-
tions between malignant cells and other immune cells 
in the TME. We observed that malignant cells had 
strong relationships with T/NK cell subsets, especially 
NK, CD8 Tex, and Prol Tex. Additionally, we found 
that human leukocyte antigen (HLA) class I molecules 
secreted by malignant cells had more interactions 
with receptors (CD8A and CD8B) expressed on these 
three subsets in the TME of ITMHhi tumors compared 
to ITMHlo tumors (Fig.  4g, Supplementary Fig.  4c). 
And these HLA class I molecules showed significantly 
higher expression in malignant cells from ITMHhi 
tumors (Supplementary Fig. 4d). These ligand-receptor 
pairs indicated a possible underlying immune  escape 
mechanism and induced an immunosuppressive envi-
ronment by affecting the antigen-presenting capacity 
in ITMHhi tumors. Based on these findings, we defined 
the ITMHhi subtype as the pro-tumoral subtype and the 
ITMHlo subtype as the anti-tumoral subtype, reflecting 

their distinct roles in tumor behavior and immune 
features.

Generation and validation of a 9‑gene signature 
for defining UM tumor cell‑intrinsic subtypes 
and prognosticating survival
Given the well-established correlation between intra-
tumoral malignant cell heterogeneity and patient prog-
nosis, we sought to develop a clinically applicable gene 
expression signature for UM tumor cell-intrinsic subtype 
classification. Based on the DEGs obtained from single-
cell analysis of malignant cells between ITMHhi and 
ITMHlo tumors, we conducted the multistep analyses 
described in Methods and generated a 9-gene signature 
in the TCGA-UM cohort (Fig.  5a). We then indepen-
dently validated the 9-gene signature in three multicenter 
UM cohorts. Using bulk transcriptome data from RNA-
sequencing or microarrays, the 9-gene signature was cal-
culated for each tumor patient and assigned patients to 
either the ITMHhi or ITMHlo subtype. Survival analysis 
revealed that patients in the predicted ITMHhi subtype 
had significantly shorter survival than those in the pre-
dicted ITMHlo subtype (HR = 3.01, 95% CI 2.67–3.36, 
p = 0.00074 for Laurent’s cohort; HR = 6.36, 95% CI 5.82–
6.90, p = 0.00012 for Gangemi’s cohort and HR = 11.98, 
95% CI 11.19–12.78, p < 0.0001 for van Essen’scohort) 
(Fig.  5b). We also performed a comparative analysis of 
the 9-gene signature against existing cytogenetic and 
molecular classifiers in UM by comparing the ROC 
curves for 5-year survival. In the TCGA cohort, the 
9-GS and GEP classes demonstrated excellent perfor-
mance, outperforming Robertson’s SCNA classes and 
cytogenetic classifiers. Given the lack of genomic data in 
the validation cohorts, we compared the 9-GS and GEP 
classes and revealed that the 9-GS showed superior per-
formance, with higher AUC values, in both the Gangemi 
and van Essen cohorts (Supplementary Fig. 5).

Discussion
UM is a highly aggressive and heterogeneous can-
cer for which effective treatment options are cur-
rently limited, particularly in the metastatic setting. 
Previous studies using multi-omics approaches have 

Fig. 4  Relationship of malignant cell heterogeneity with immune microenvironment reprogramming. a t-SNE visualization of T, myeloid, and B cells, 
colored by cell subsets. CD8 Tex: exhausted CD8 + T cells; Prol Tex: proliferative exhausted cells; TAM: tumor-associated macrophages; DC: Dendritic 
cell. b Box plots showing the differences in the infiltrating proportion of CD8 Tex, Prol Tex and Treg between ITMHhi and ITMHlo tumors in single-cell 
cohort. c Box plots showing the differences in the exhaustion, immunosuppression, and cytotoxicity score between ITMHhi and ITMHlo tumors 
in the single-cell cohort. d Heatmap showing the infiltrating immune composition using CIBERSORT and ssGSEA. e Heatmap showing the relative 
activity of transcription factor in T cell subsets. f Scatter plot showing the outgoing and incoming interaction strength of each cell subset in ITMHlo 
tumors and ITMHhi tumors. g Dot plot of ligand-receptor interaction from tumor cells to immune cells between ITMHhi tumors and ITMHlo tumors; 
dot size represents the P-value, and color represents the interaction strength

(See figure on next page.)
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identified intertumoral molecular heterogeneity based 
on population-level data [45]. ITH has been recog-
nized as a cancer hallmark and has contributed to 

tumor evolution, disease progression, and therapy 
resistance [46]. Although scRNA-seq analyses have 
been used to characterize tumor ecosystems and the 

Fig. 4  (See legend on previous page.)
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microenvironment of UM [19, 20, 47], a more compre-
hensive understanding of the underlying biodiversity and 
heterogeneity of UM malignant cells at the single-cell 
level is still lacking. In this study, we performed a com-
prehensive integrated scRNA-seq analysis of 37,660 UM 
malignant cells from 17 patients, which revealed the 
transcriptional diversity and heterogeneity of UM malig-
nant cells at the single-cell resolution. Furthermore, these 
transcriptomically distinct malignant cell subpopulations 
represented intertumoral and intratumoral heterogeneity.

We revealed that the malignant cells in UM undergo 
progressive changes from low ITMH to high ITMH, 
which are accompanied by alterations in functional 
programs and metabolic patterns. Notably, we identi-
fied five common expression programs that recur across 
transcriptomically distinct malignant cell subpopula-
tions from scRNA-seq data, suggesting that the gene 
signatures of these five programs are predominantly 
expressed in most UM malignant cells and are crucial in 
determining the biology and phenotypes of UM malig-
nant cells, including their abilities to survive, proliferate, 
migrate and metastasize. However, only three programs 
(stress responses, MYC, and antigen presentation) sig-
nificantly differed and were associated with the tumor 
cell composition diversity of individual tumors. These 

findings suggest the functional specialization of differ-
ent malignant cell subpopulations that may contribute 
to tumor progression, metastasis, and patient progno-
sis in UM. Moreover, UM tumors with different ITMH 
subtypes exhibited distinct metabolic phenotypes for 
energy production. ITMHlo tumors showed enrich-
ment in oxidative phosphorylation, suggesting that clini-
cal treatments for this subtype of patients may be more 
suitable for targeting mitochondrial function or oxida-
tive phosphorylation pathways. In contrast, ITMHhi 
tumors exhibited an up-regulation of glycolysis function, 
indicating that these patients may benefit from treat-
ment strategies targeting the glycolysis pathway, such 
as glycolysis-targeting or carbohydrate restriction. This 
metabolic switch from OXPHOS to glycolysis has been 
reported to be closely associated with the regulation of 
oncogenes in tumorigenesis and to promote an immu-
nosuppressive microenvironment in cancers [48]. Given 
the highly immunosuppressive TME of ITMHhi patients, 
characterized by an enrichment of exhausted T cells 
and Tregs and a depletion of cytotoxicity scores, treat-
ment regimens with immune checkpoint inhibitors or 
other immunomodulatory drugs may be considered to 
restore immune activity for these patients. Heterogeneity 
in functional programs, metabolic pattern and immune 
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microenvironment of different ITMH tumors enabled 
us to gain insight into the evolutionary mechanisms 
of malignant cells in UM and to develop more effective 
methods for cancer intervention.

Considerable efforts have been made to investigate 
tumor cell heterogeneity in various cancer types, such 
as liver cancer [13] and gastric adenocarcinoma [14], 
and to identify functional programs and gene expres-
sion signatures associated with tumor progression, drug 
resistance or metastasis [49–51]. The observed effects of 
ITH on tumor subtypes and patient prognosis highlight 
the importance of investigating the underlying cellular 
phenotypes and heterogeneity. Although tumor ecosys-
tem diversity in the tumor microenvironment influences 
tumor subtype heterogeneity [52–54], ITH in UM at 
the single-cell level remains largely unknown. Although 
two recent RNA-seq studies have made initial attempts 
to reveal intra-tumoral cellular heterogeneity in UM 
tumors [19, 20], there is still a knowledge gap regarding 
the impact of malignant cell ITH on tumor characteris-
tics and subtype classification at both single-cell and bulk 
levels. Although multi-omic characterization of UM has 
identified molecularly and clinically distinct subtypes 
at the bulk level [45, 55–57], increasing evidence from 
scRNA-seq studies suggests a refinement of subtype 
classification beyond the current bulk-based subtypes 
[16, 58, 59]. However, accurate classification and char-
acterization of UM subtypes at the single-cell resolution 
remains to be achieved. Therefore, we quantified gene 
signatures of tumor cell diversity within tumors based 
on bulk transcriptomes across different UM datasets 
and identified two tumor cell-intrinsic cellular subtypes 
(ITMHhi and ITMHlo). Consistent with the previously 
observed association between tumor cell diversity and 
patient survival in other cancer types [13, 14], patients 
with different levels and diversity of malignant cell com-
position differed in their survival outcomes, with ITMHhi 
associated with poorer outcomes and ITMHlo with bet-
ter outcomes. Furthermore, tumor cell-intrinsic cellular 
subtypes are prognostic independent of clinical and his-
topathological features but also provide a further sub-
stratification beyond the current subtypes by highlighting 
molecular, biological and immune microenvironment 
features underlying these two tumor-cell-intrinsic cellu-
lar subtypes. These findings provide important directions 
for future clinical trials and treatment decisions in UM.

The accurate delineation of UM subtypes is essen-
tial for developing effective clinical treatment strate-
gies. Identifying tumor cell-intrinsic subtypes offers 
new insights into the admixture of established molecu-
lar subtypes within UM. To translate single-cell-defined 
tumor-cell-intrinsic subtypes into clinical practice with 
bulk data, we developed a 9-gene expression signature 

to classify UM tumor-cell-intrinsic subtypes. The 9-gene 
expression signature showed high prognostic accuracy in 
several multicenter UM patient cohorts. With standard 
chemotherapeutic agents, drug resistance in UM patients 
has become a critical challenge. Although currently used, 
preclinical drug screening with cell lines and xenograft 
models poorly reflects the complex molecular landscape 
of UM [6].

Conclusions
Our study uncovered the transcriptomic landscape of 
UM tumor cells, revealing the transcriptional diversity 
and heterogeneity among malignant cells through inte-
grated single-cell RNA-seq and bulk transcriptome anal-
yses. By leveraging the heterogeneous gene expression 
programs of malignant cells, we identified tumor cell-
intrinsic subtypes of UM with distinct molecular, bio-
logical, and clinical features. Furthermore, we established 
and validated a 9-gene signature to translate scRNA-seq 
information into bulk tissue transcriptome for clinical 
application in patient stratification beyond the previously 
established consensus molecular subtype classification 
of UM. In conclusion, our study provides insight into 
understanding the intra-tumoral heterogeneity of UM 
and its potential impact on patient stratification.

Abbreviations
UM	� Uveal melanoma
ITH	� Intra-tumoral heterogeneity
scRNA-seq	� Single-cell RNA sequencing
t-SNE	� T-distributed stochastic neighbourhood embedding
CNV	� Copy-number variation
TF	� Transcription factor

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12967-​024-​05831-2.

Additional file 1: Supplementary Figures. 

Additional file 2: Supplementary Table 1.

Author contributions
MZ, JS conceived and designed the study. KL, JZH and YT performed data 
analysis and interpretation. KL wrote the first draft. MZ and JS revised the 
manuscript. All authors read and approved the final manuscript.

Funding
This study was supported by the National Natural Science Foundation of 
China (62372331). The funders had no roles in study design, data collection 
and analysis, publication decision, or manuscript preparation.

Availability of data and materials
All public single-cell RNA sequencing data and bulk microarray data are availa-
ble from the GEO database under accession numbers GSE139829, GSE138665, 
GSE22138, GSE27831 and GSE84976. Bulk RNA-seq data were obtained from 
UCSC Xena (GDC TCGA-UM cohort) (https://​xenab​rowser.​net/​datap​ages/). 
The code generated or used during the study are available in GitHub (https://​
github.​com/​Zhoul​abCPH/​UVM_​ITH).

https://doi.org/10.1186/s12967-024-05831-2
https://doi.org/10.1186/s12967-024-05831-2
https://xenabrowser.net/datapages/
https://github.com/ZhoulabCPH/UVM_ITH
https://github.com/ZhoulabCPH/UVM_ITH


Page 14 of 15Li et al. Journal of Translational Medicine         (2024) 22:1020 

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing financial interests.

Received: 29 August 2024   Accepted: 30 October 2024

References
	1.	 Smit KN, Jager MJ, de Klein A, Kili E. Uveal melanoma: towards a molecu-

lar understanding. Prog Retin Eye Res. 2020;75: 100800.
	2.	 Shain AH, Bagger MM, Yu R, Chang D, Liu S, Vemula S, et al. The genetic 

evolution of metastatic uveal melanoma. Nat Genet. 2019;51(7):1123–30.
	3.	 Kaliki S, Shields CL. Uveal melanoma: relatively rare but deadly cancer. Eye 

(Lond). 2017;31(2):241–57.
	4.	 Nathan P, Hassel JC, Rutkowski P, Baurain JF, Butler MO, Schlaak M, et al. 

Overall survival benefit with tebentafusp in metastatic uveal melanoma. 
N Engl J Med. 2021;385(13):1196–206.

	5.	 Lin W, Beasley AB, Ardakani NM, Denisenko E, Calapre L, Jones M, et al. 
Intra- and intertumoral heterogeneity of liver metastases in a patient with 
uveal melanoma revealed by single-cell RNA sequencing. Cold Spring 
Harb Mol Case Stud. 2021. https://​doi.​org/​10.​1101/​mcs.​a0061​11.

	6.	 Jager MJ, Shields CL, Cebulla CM, Abdel-Rahman MH, Grossniklaus HE, 
Stern MH, et al. Uveal melanoma. Nat Rev Dis Primers. 2020;6(1):24.

	7.	 de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L, et al. 
Spatial and temporal diversity in genomic instability processes defines 
lung cancer evolution. Science. 2014;346(6206):251–6.

	8.	 Greaves M. Evolutionary determinants of cancer. Cancer Discov. 
2015;5(8):806–20.

	9.	 Nguyen PHD, Ma S, Phua CZJ, Kaya NA, Lai HLH, Lim CJ, et al. Intratu-
moural immune heterogeneity as a hallmark of tumour evolution and 
progression in hepatocellular carcinoma. Nat Commun. 2021;12(1):227.

	10.	 Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, Deshwar 
AG, et al. Characterizing genetic intra-tumor heterogeneity across 2,658 
human cancer genomes. Cell. 2021;184(8):2239-54 e39.

	11.	 Li K, Zhang R, Wen F, Zhao Y, Meng F, Li Q, et al. Single-cell dissection of 
the multicellular ecosystem and molecular features underlying micro-
vascular invasion in HCC. Hepatology. 2023. https://​doi.​org/​10.​1097/​HEP.​
00000​00000​000673.

	12.	 Hinohara K, Polyak K. Intratumoral heterogeneity: more than just muta-
tions. Trends Cell Biol. 2019;29(7):569–79.

	13.	 Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell 
biodiversity drives microenvironmental reprogramming in liver cancer. 
Cancer Cell. 2019;36(4):418–306.

	14.	 Wang R, Dang M, Harada K, Han G, Wang F, Pool Pizzi M, et al. Single-cell 
dissection of intratumoral heterogeneity and lineage diversity in meta-
static gastric adenocarcinoma. Nat Med. 2021;27(1):141–51.

	15.	 Yeo SK, Zhu X, Okamoto T, Hao M, Wang C, Lu P, et al. Single-cell RNA-
sequencing reveals distinct patterns of cell state heterogeneity in mouse 
models of breast cancer. Elife. 2020. https://​doi.​org/​10.​7554/​eLife.​58810.

	16.	 Joanito I, Wirapati P, Zhao N, Nawaz Z, Yeo G, Lee F, et al. Single-cell and 
bulk transcriptome sequencing identifies two epithelial tumor cell states 
and refines the consensus molecular classification of colorectal cancer. 
Nat Genet. 2022;54(7):963–75.

	17.	 Lawson DA, Kessenbrock K, Davis RT, Pervolarakis N, Werb Z. Tumour 
heterogeneity and metastasis at single-cell resolution. Nat Cell Biol. 
2018;20(12):1349–60.

	18.	 McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: 
past, present, and the future. Cell. 2017;168(4):613–28.

	19.	 Durante MA, Rodriguez DA, Kurtenbach S, Kuznetsov JN, Sanchez MI, 
Decatur CL, et al. Single-cell analysis reveals new evolutionary complexity 
in uveal melanoma. Nat Commun. 2020;11(1):496.

	20.	 Pandiani C, Strub T, Nottet N, Cheli Y, Gambi G, Bille K, et al. Single-cell 
RNA sequencing reveals intratumoral heterogeneity in primary uveal 
melanomas and identifies HES6 as a driver of the metastatic disease. Cell 
Death Differ. 2021;28(6):1990–2000.

	21.	 Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, But-
ler A, et al. Integrated analysis of multimodal single-cell data. Cell. 
2021;184(13):3573–8729.

	22.	 Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, 
sensitive and accurate integration of single-cell data with Harmony. Nat 
Methods. 2019;16(12):1289–96.

	23.	 Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive 
landscape in the human esophageal squamous cell carcinoma microen-
vironment. Nat Commun. 2020;11(1):6268.

	24.	 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The 
dynamics and regulators of cell fate decisions are revealed by pseu-
dotemporal ordering of single cells. Nat Biotechnol. 2014;32(4):381–6.

	25.	 Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, 
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and 
clustering. Nat Methods. 2017;14(11):1083–6.

	26.	 Laurent C, Valet F, Planque N, Silveri L, Maacha S, Anezo O, et al. High 
PTP4A3 phosphatase expression correlates with metastatic risk in uveal 
melanoma patients. Cancer Res. 2011;71(3):666–74.

	27.	 Gangemi R, Mirisola V, Barisione G, Fabbi M, Brizzolara A, Lanza F, et al. 
Mda-9/syntenin is expressed in uveal melanoma and correlates with 
metastatic progression. PLoS ONE. 2012;7(1): e29989.

	28.	 van Essen TH, van Pelt SI, Bronkhorst IH, Versluis M, Nemati F, Laurent C, 
et al. Upregulation of HLA expression in primary uveal melanoma by 
infiltrating leukocytes. PLoS ONE. 2016;11(10): e0164292.

	29.	 Mermel CH, Schumacher SE, Hill B, Meyerson ML, Beroukhim R, Getz G. 
GISTIC2.0 facilitates sensitive and confident localization of the targets of 
focal somatic copy-number alteration in human cancers. Genome Biol. 
2011;12(4):41.

	30.	 Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer 
(IGV): high-performance genomics data visualization and exploration. 
Brief Bioinform. 2013;14(2):178–92.

	31.	 Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix 
factorization. BMC Bioinformatics. 2010;11:367.

	32.	 Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. 
Inference and analysis of cell-cell communication using cell chat. Nat 
Commun. 2021;12(1):1088.

	33.	 Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics 
immuno-oncology biological research to decode tumor microenviron-
ment and signatures. Front Immunol. 2021;12: 687975.

	34.	 Harbour JW. A prognostic test to predict the risk of metastasis in uveal 
melanoma based on a 15-gene expression profile. Methods Mol Biol. 
2014;1102:427–40.

	35.	 Kalirai H, Dodson A, Faqir S, Damato BE, Coupland SE. Lack of BAP1 
protein expression in uveal melanoma is associated with increased 
metastatic risk and has utility in routine prognostic testing. Br J Cancer. 
2014;111(7):1373–80.

	36.	 Koopmans AE, Verdijk RM, Brouwer RW, van den Bosch TP, van den Berg 
MM, Vaarwater J, et al. Clinical significance of immunohistochemistry 
for detection of BAP1 mutations in uveal melanoma. Mod Pathol. 
2014;27(10):1321–30.

	37.	 Sung JY, Shin HT, Sohn KA, Shin SY, Park WY, Joung JG. Assessment of 
intratumoral heterogeneity with mutations and gene expression profiles. 
PLoS ONE. 2019;14(7): e0219682.

	38.	 Martin M, Masshofer L, Temming P, Rahmann S, Metz C, Bornfeld N, et al. 
Exome sequencing identifies recurrent somatic mutations in EIF1AX and 
SF3B1 in uveal melanoma with disomy 3. Nat Genet. 2013;45(8):933–6.

	39.	 Yavuzyigitoglu S, Koopmans AE, Verdijk RM, Vaarwater J, Eussen B, van 
Bodegom A, et al. Uveal melanomas with SF3B1 mutations: a distinct 
subclass associated with late-onset metastases. Ophthalmology. 
2016;123(5):1118–28.

	40.	 Smart SK, Vasileiadi E, Wang X, DeRyckere D, Graham DK. The emerging 
role of TYRO3 as a therapeutic target in cancer. Cancers (Basel). 2018. 
https://​doi.​org/​10.​3390/​cance​rs101​20474.

https://doi.org/10.1101/mcs.a006111
https://doi.org/10.1097/HEP.0000000000000673
https://doi.org/10.1097/HEP.0000000000000673
https://doi.org/10.7554/eLife.58810
https://doi.org/10.3390/cancers10120474


Page 15 of 15Li et al. Journal of Translational Medicine         (2024) 22:1020 	

	41.	 Moore AR, Ceraudo E, Sher JJ, Guan Y, Shoushtari AN, Chang MT, et al. 
Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in 
uveal melanoma. Nat Genet. 2016;48(6):675–80.

	42.	 Arzt L, Kothmaier H, Halbwedl I, Quehenberger F, Popper HH. Signal 
transducer and activator of transcription 1 (STAT1) acts like an oncogene 
in malignant pleural mesothelioma. Virchows Arch. 2014;465(1):79–88.

	43.	 Greenwood C, Metodieva G, Al-Janabi K, Lausen B, Alldridge L, Leng 
L, et al. Stat1 and CD74 overexpression is co-dependent and linked to 
increased invasion and lymph node metastasis in triple-negative breast 
cancer. J Proteomics. 2012;75(10):3031–40.

	44.	 Zhang Y, Liu Z. STAT1 in cancer: friend or foe? Discov Med. 
2017;24(130):19–29.

	45.	 Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative 
analysis identifies four molecular and clinical subsets in uveal melanoma. 
Cancer Cell. 2018;33(1):151.

	46.	 Vitale I, Shema E, Loi S, Galluzzi L. Intratumoral heterogeneity in 
cancer progression and response to immunotherapy. Nat Med. 
2021;27(2):212–24.

	47.	 Li K, Sun L, Wang Y, Cen Y, Zhao J, Liao Q, et al. Single-cell characterization 
of macrophages in uveal melanoma uncovers transcriptionally heteroge-
neous subsets conferring poor prognosis and aggressive behavior. Exp 
Mol Med. 2023;55(11):2433–44.

	48.	 Zheng J. Energy metabolism of cancer: Glycolysis versus oxidative phos-
phorylation (Review). Oncol Lett. 2012;4(6):1151–7.

	49.	 Biermann J, Melms JC, Amin AD, Wang Y, Caprio LA, Karz A, et al. Dissect-
ing the treatment-naive ecosystem of human melanoma brain metasta-
sis. Cell. 2022;185(14):2591-608 e30.

	50.	 Pozniak J, Pedri D, Landeloos E, Van Herck Y, Antoranz A, Vanwynsberghe 
L, et al. A TCF4-dependent gene regulatory network confers resistance to 
immunotherapy in melanoma. Cell. 2024;187(1):166-83 e25.

	51.	 Tirosh I, Izar B, Prakadan SM, Wadsworth MH 2nd, Treacy D, Trombetta JJ, 
et al. Dissecting the multicellular ecosystem of metastatic melanoma by 
single-cell RNA-seq. Science. 2016;352(6282):189–96.

	52.	 Barkley D, Moncada R, Pour M, Liberman DA, Dryg I, Werba G, et al. 
Cancer cell states recur across tumor types and form specific interactions 
with the tumor microenvironment. Nat Genet. 2022;54(8):1192–201.

	53.	 Ge G, Han Y, Zhang J, Li X, Liu X, Gong Y, et al. Single-cell RNA-seq reveals 
a developmental hierarchy super-imposed over subclonal evolution in 
the cellular ecosystem of prostate cancer. Adv Sci (Weinh). 2022;9(15): 
e2105530.

	54.	 Steen CB, Luca BA, Esfahani MS, Azizi A, Sworder BJ, Nabet BY, et al. The 
landscape of tumor cell states and ecosystems in diffuse large B cell 
lymphoma. Cancer Cell. 2021;39(10):1422–3710.

	55.	 Cassoux N, Rodrigues MJ, Plancher C, Asselain B, Levy-Gabriel C, Lum-
broso-Le Rouic L, et al. Genome-wide profiling is a clinically relevant and 
affordable prognostic test in posterior uveal melanoma. Br J Ophthalmol. 
2014;98(6):769–74.

	56.	 Onken MD, Worley LA, Ehlers JP, Harbour JW. Gene expression profiling in 
uveal melanoma reveals two molecular classes and predicts metastatic 
death. Cancer Res. 2004;64(20):7205–9.

	57.	 Yan C, Hu X, Liu X, Zhao J, Le Z, Feng J, et al. Upregulation of SLC12A3 and 
SLC12A9 mediated by the HCP5/miR-140-5p Axis confers aggressiveness 
and unfavorable prognosis in uveal melanoma. Lab Invest. 2023;103(3): 
100022.

	58.	 Olbrecht S, Busschaert P, Qian J, Vanderstichele A, Loverix L, Van Gorp 
T, et al. High-grade serous tubo-ovarian cancer refined with single-cell 
RNA sequencing: specific cell subtypes influence survival and determine 
molecular subtype classification. Genome Med. 2021;13(1):111.

	59.	 Li Q, Wang R, Yang Z, Li W, Yang J, Wang Z, et al. Molecular profiling of 
human non-small cell lung cancer by single-cell RNA-seq. Genome Med. 
2022;14(1):87.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Single-cell and bulk transcriptome analysis reveals tumor cell heterogeneity and underlying molecular program in uveal melanoma
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Materials and methods
	Single-cell transcriptome data and analysis
	Scoring of T cell properties
	Pseudotime trajectory analysis
	SCENIC analysis
	CNV estimation from scRNA-seq
	Bulk transcriptome data and analysis
	Genomic mutation analysis
	Deciphering transcriptional programs underlying tumor cell-intrinsic heterogeneity
	Cell–cell communication analysis
	Computational estimation of tumor-infiltrated immune cells from bulk transcriptomic data
	Identification of ITMH-related DEGs
	Generation of a 9-gene signature for tumor cell-intrinsic subtype determination
	Statistical analysis

	Results
	ScRNA-seq analysis revealed transcriptional heterogeneity of malignant cells within and between UM tumors
	Single-cell analysis of ITMH-defined tumor cell-intrinsic UM subtypes with different clinical phenotypes and outcomes

	Molecular characteristics correlated with intra-tumoral malignant cell heterogeneity
	Relationship of intra-tumoral malignant cell heterogeneity with immune microenvironment reprogramming
	Generation and validation of a 9-gene signature for defining UM tumor cell-intrinsic subtypes and prognosticating survival

	Discussion
	Conclusions
	References


