
Manasherob et al. 
Journal of Translational Medicine         (2024) 22:1041  
https://doi.org/10.1186/s12967-024-05866-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of 
Translational Medicine

The mononuclear phagocyte system 
obscures the accurate diagnosis of infected joint 
replacements
Robert Manasherob1,2, Shay I. Warren1, Prerna Arora1, Lyong Heo3, Naomi L. Haddock4, Ievgen Koliesnik5, 
Diasuke Furukawa5, Z. Ngalo Otieno‑Ayayo6, William J. Maloney1, David W. Lowenberg1, 
Stuart B. Goodman1,2 and Derek F. Amanatullah1,2*   

Abstract 

Introduction Diagnosing infected joint replacements relies heavily on assessing the neutrophil response to bacteria. 
Bacteria form biofilms on joint replacements. Biofilms are sessile bacterial communities encased in a protective 
extracellular matrix, making them notoriously difficult to culture, remarkably tolerant to antibiotics, and able 
to evade phagocytosis. Phagocytized bacteria dramatically alter cytokine production and compromise macrophage 
antigen presentation. We hypothesize that a subset of joint replacements have a dormant infection that suppresses 
the neutrophil response to bacteria but can be distinguished from uninfected joint replacements by the response 
of the mononuclear phagocyte system (MPS) within periarticular tissue, synovial fluid, and circulating plasma.

Methods Single cell RNASeq transcriptomic and OLink proteomic profiling was performed on matched whole blood, 
synovial fluid, and periarticular tissue samples collected from 4 joint replacements with an active infection and 3 
joint replacements without infection as well as 6 joint replacements with a prior infection deemed “infection‑free” 
by the 2018 Musculoskeletal Infection Society criteria (follow‑up of 26 ± 3 months).

Results The MPS and neutrophil responses differ by infected state; the cellular distribution of the MPS response 
in the subset of joints with dormant infections resembled actively infected joints (p = 0.843, Chi‑square test) 
but was significantly different from uninfected joints (p < 0.001, Chi‑square test) despite the absence of systemic 
acute phase reactants and recruitment of neutrophils (p < 0.001, t‑test). When compared to no infection, the cellular 
composition of dormant infection was distinct. There was reduction in classically activated M1 macrophages 
(p < 0.001, Fischer’s test) and alternatively activated M2 macrophages coupled with an increase in classical monocytes 
(p < 0.001, Fischer’s test), myeloid dendritic cells (p < 0.001, Fischer’s test), regulatory T‑cells (p < 0.001, Fischer’s test), 
natural killer cells (p = 0.009, Fischer’s test), and plasmacytoid dendritic cells (p = 0.005, Fischer’s test). Hierarchical 
cluster analysis and single‑cell gene expression revealed that classically M1 and alternatively M2 activated 
macrophages as well as myeloid dendritic cells can independently distinguish the dormant and uninfected patient 
populations suggesting that a process that modulates neutrophil recruitment (C1QA, C1QB, LY86, SELL, CXCL5, CCL20, 
CD14, ITGAM), macrophage polarization (FOSB, JUN), immune checkpoint regulation (IFITM2, IFITM3, CST7, THBS1), 
and T‑cell response (VISIG4, CD28, FYN, LAT2, FCGR3A, CD52) was occurring during dormant infection. Gene set 
variation analysis suggested that activation of the TNF (FDR < 0.01) and IL17 (FDR < 0.01) pathways may distinguish 
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dormant infections from the active and uninfected populations, while an inactivation of neutrophil extracellular traps 
(NETs) may be involved in the lack of a clinical response to a dormant infection using established diagnostic criteria. 
Synovial inflammatory proteomics show an increase in synovial CXCL5 associated with dormant infection (p = 0.011, 
t‑test), suggesting the establishment of a chronic inflammatory state by the MPS during a dormant infection involved 
in neutrophil inhibition. Plasma inflammatory proteomics also support a chronic inflammatory state (EGF, GZMN, 
FGF2, PTN, MMP12) during dormant infection that involves a reduction in neutrophil recruitment (CXCL5, p = 0.006, 
t‑test), antigen presentation (LAMP3, p = 0.047, t‑test), and T‑cell function (CD28, p = 0.045, t‑test; CD70, p = 0.002, 
t‑test) that are also seen during the development of bacterial tolerance.

Discussion All current diagnostic criteria assume each patient can mount the same neutrophil response 
to an implant‑associated infection. However, the state of the MPS is of critical importance to accurate diagnosis 
of an implant‑associated infection. A reduction in neutrophil recruitment and function mediated by the MPS may 
allow joint replacements with a dormant infection to be mischaracterized as uninfected, thus limiting the prognostic 
capabilities of all current diagnostic tests.

Introduction
The accurate diagnosis of an infected joint replacement 
relies primarily on the systemic and local neutrophil 
response to bacteria. Current diagnostic tests for a joint 
replacement with an active infection include standard 
microbiological synovial fluid and tissue cultures, 
systemic acute phase reactants present during the 
neutrophil response [e.g., erythrocyte sedimentation 
rate (ESR), C-reactive protein (CRP), D-dimer], and 
the synovial neutrophil response [e.g., synovial white 
blood cell count (sWBC), percentage of synovial 
polymorphonuclear neutrophils (PMN%), double 
positive leukocyte esterase strips, histologic presence 
of PMNs within the synovium, synovial alpha-defensin 
(SaD) expression normalized to synovial CRP] [1, 2]. 
The systemic and local neutrophil response to bacteria 
is highly specific for diagnosing an active infection 
(Fig.  1A) [3–5] but are highly redundant and may not 

necessarily add independent diagnostic value, creating 
a false elevation of sensitivity, specificity, and predictive 
value [6]. After surgery, it can be difficult to distinguish 
the neutrophil response to bacteria from the neutrophil 
response stimulated by the acute insult of surgery 
itself, since 40% of uninfected joint replacements have 
a persistent neutrophil response for more than 6 weeks 
[7–9].

The presentation of an infected joint replacement is 
highly variable, dictated by timing after surgery, infecting 
organism, host immune status, and mechanism of 
infection. Traditionally, early infection is defined within 
1  month (Tsukayama definition) [10] or within 90  days 
(Center for Disease Control definition) after surgery [11]. 
Early infection presents with pain, swelling, surrounding 
erythema, tenderness, fevers, and wound drainage, 
and there is often little debate about the presence of an 
early infection. However, late infections result from 

Fig. 1 A The local and systemic polymorphonuclear neutrophil (PMN) response is used to diagnose active infection and drive surgical 
management. B The PMN response is part of a more complex innate immune response to bacteria regulated by the mononuclear phagocyte 
system (MPS). We hypothesize that a subset of joint replacements harbors a dormant infection that can be distinguished from uninfected joint 
replacements by the MPS response to bacteria
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three pathological mechanisms. First, direct surgical 
inoculation with a low virulence organism that emerges 
in a delayed fashion. Second, indirect inoculation due 
to acute hematogenous spread. Third, direct surgical 
inoculation with bacteria that avoid eradication and 
emerge in a delayed fashion (a.k.a., dormant infection) 
after new trauma/surgery, a change in the global immune 
status of the host, or quorum triggering (Fig.  1B). An 
early infection within 4  weeks of surgery and the acute 
presentation of a late hematogenous infection with 
less than 4  weeks of symptoms are often managed with 
debridement and implant retention (DAIR) with reported 
success rates ranging widely from approximately 
30–80% [11, 12]. It is likely that the high failure rate 
observed in DAIR is due in part to the misdiagnosis 
of a now emerging dormant infection as a new acute 
hematogenous infection. Moreover, the relatively high 
failure rate of DAIR may be caused by biofilm-mediated 
bacterial tolerance, which is present even after implant 
removal. An increased focus on the immunology of 
dormant infection may improve clinical decision-making 
and provide potential therapeutic targets to improve 
these outcomes.

The neutrophil response used by current diagnostic 
tests is part of a larger and more complex innate immune 
response to bacteria regulated by the mononuclear 
phagocyte system (MPS). The MPS consists of local mac-
rophages, resident dendritic cells, and circulating mono-
cytes that regulate the innate immune system’s response 
to bacteria. In response to an infected joint replacement, 
the MPS initiates a pro-inflammatory immune response 
by secreting cytokines [e.g., interleukin (IL) 1, IL6, IL8, 
macrophage inflammatory proteins] that recruit neutro-
phils and activate macrophages to eradicate bacteria [13]. 
The MPS concurrently initiates an anti-inflammatory 
immune response by secreting a different set of cytokines 
(e.g., IL4, IL13, IL10, IL35, transforming growth fac-
tor beta (b), indoleamine 2,3-dioxygenase) [14–17] and 
major histocompatibility class II costimulatory immune 
checkpoint molecules [e.g., programmed death ligand 
(PD-L) 1] that drive myeloid-derived suppressor cell for-
mation as well as T-cell function via anergy, depletion, or 
conversion of naïve T-cells to regulatory T-cells [18]. The 
anti-inflammatory response of the MPS is responsible for 
the resolution of the initial pro-inflammatory response 
as well as bacterial tolerance (i.e., not eradicating bacte-
ria). Bacterial tolerance is critical, since it prevents the 
development of autoimmunity to commensal organisms 
that provide essential nutrients and probiotic metabolites 
[19–22]. Because current diagnostic tests for an infected 
joint replacement are focused solely on the neutrophil 
response to bacteria present during bacterial eradica-
tion, the tests can only accurately identify the incidence 

of active infection over time (Fig. 1A). All current diag-
nostic tests neglect the possibility of a novel class of joint 
replacements with a dormant infection that are essential 
for the development of novel screening tests and disease 
prevention (Fig. 1B) [23, 24].

Bacteria form biofilms on joint replacements. Biofilms 
are bacterial communities encased in a protective extra-
cellular matrix making them notoriously difficult to cul-
ture, remarkably tolerant to antibiotics, and able to evade 
phagocytosis [25–28]. Biofilm-resident bacteria affect the 
MPS by dramatically altering local cytokine production 
and compromising antigen presentation [29, 30]. When 
engulfed, biofilm-resident bacteria stimulate the produc-
tion of interleukin-10 (IL10) [31–34], which polarizes 
macrophages from the classical activation state (M1) to 
an alternative activation state (M2) [28, 29, 34, 35]. Bio-
film-resident bacteria also upregulate monocyte expres-
sion of PD-L1 [8, 36]. Immune checkpoint molecules, like 
PD-L1 and PD-L2, inhibit signaling pathways involved 
in antigen clearance [36–42]. Immune checkpoint mol-
ecule expression is a risk factor for the development of 
an active infection. In our published pilot study of 31 
patients, PD-L1 expression in the macrophage infiltrate 
of joint replacements was associated with an eightfold 
increase in the odds of a prolonged neutrophil response 
(odds ratio: 8.3, 95% confidence interval: 0.6–110, 
p = 0.043) and a 22-fold increase in the odds of devel-
oping a new infection (odds ratio: 21.9, 95% confidence 
interval: 0.9–524, p = 0.038) [8]. Thus, it is highly plau-
sible that biofilm-resident bacteria may establish a dor-
mant infection by influencing the local immune response, 
mediated by the MPS that suppresses neutrophil recruit-
ment. Thus, the neutrophil response to biofilm-resident 
bacteria may be a poor predictor of future active infec-
tions that emerge over time [43]. We hypothesize that a 
subset of joint replacements harbor a dormant infection 
that suppresses the neutrophil response to bacteria but 
can be distinguished from uninfected joint replacements 
by the response of the MPS within periarticular tissue, 
synovial fluid, and circulating plasma (Fig. 1B).

Numerous factors unique to each patient increase 
the risk of developing an infected joint replacement, 
including obesity, diabetes mellitus, rheumatoid arthritis, 
immunosuppressive medications, malignancy, smoking, 
injection drug use, prior bacteremia, prior septic 
arthritis in the operative joint, and prior arthroplasty or 
arthroscopy on the operative joint [44–53]. Perioperative 
risk factors also include active infection at distant sites, 
prolonged duration of the surgical procedure, allogeneic 
blood transfusion, and wound dehiscence [11]. All of 
these risk factors can be directly or indirectly tied to 
host immunity. Yet, the state of a patient’s MPS prior 
to a joint replacement remains uncharacterized in each 
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case, rendering prognostication elusive despite ceaseless 
evaluation of associative clinical parameters. This 
highlights the fact that all current diagnostic criteria 
erroneously assume each patient can mount the same 
neutrophil response to an infected joint replacement 
and neglect the observation that the neutrophil response 
is regulated by the MPS [1]. In fact, four scenarios 
suggesting that patients may have dormant infections 
without a robust neutrophil response. First, the clearest 
sign of a joint replacement with an active infection is 
the presence of a sinus tract (e.g., a joint replacement 
that has chronically draining frank purulent fluid from 
an open wound) [1]. When a sinus tract is present, 
there may not be a neutrophil response to bacteria, and 
the infecting bacteria may be difficult to isolate using 
a synovial fluid culture [3]. Second, ≥ 30% of patients 
with a neutrophil response to bacteria never have an 
identified synovial fluid or tissue culture (i.e., culture-
negative infections) [54]. Third, immunocompromised 
patients with inflammatory arthritis [55], cancer [56–58], 
or solid organ transplantation [59, 60] may not have a 
neutrophil response even when bacteria are identified by 
synovial fluid or tissue culture [61]. Fourth, antibiotics 
can be used to control the neutrophil response and even 
suppress synovial fluid and tissue culture results, but the 
use of antibiotics does not remove bacteria from a joint 
replacement, especially when biofilm is present [62, 63]. 
However, when antibiotics are stopped, the bacteria 
re-emerge, as does the neutrophil response [30, 54, 
64–66].

Methods
Patient Samples
After Institutional review board approval at Stanford 
University (Biosaftey #4328, Clinical Safety #54462 and 
#72855), we collected 5  cc of whole blood in a purple 
top tube, aspirated synovial fluid in a purple top tube, 
and 5  cc of periarticular tissue from the superior cap-
sule (total hip arthroplasty) or suprapatellar pouch (total 
knee arthroplasty) from 48 patients. From the attempted 
cohort, 20 complete matched samples were obtained 
(42%). Of the matched cohort, 13 samples (65%) had 
sufficiently high quality RNA and protein isolation for 
final analysis: 4 joint replacements with a Staphylococ-
cus aureus, lugdunesis, or epidermidis infection (follow-
up: 26 ± 5 months after resection and spacer placement), 
3 joint replacements without an infection (follow-up: 
27 ± 1  month after revision surgery, p = 0.621, t-test v. 
infections), and 6 joint replacements with a prior S. 
aureus, S. lugdunesis, S. epidermidis, or Salmonella 
enterica infection deemed “infection-free” by the 2018 
Musculoskeletal Infection Society (MSIS) criteria for 
14 ± 12 week prior to reimplantation and after completion 

of antibiotics (follow-up of 25 ± 2 months after reimplan-
tation, p = 0.597, t-test v. infections) [1]. Comparisons of 
categorical variables between these groups were made 
with an  X2 test, while comparisons of continuous varia-
bles were made using a Welch two-tailed unpaired t-test.

The definition of dormant infection
We intentionally utilized an immunologic definition of a 
dormant infection based on a persistent MPS response 
after a prior bacterial infection. First, biofilm and bacte-
rial persistence often obscure bacterial culture results 
making them a highly unreliable diagnostic tool [30, 67, 
68]. Second, advanced sequencing techniques are subject 
to surgical sampling bias and the detection of contami-
nating bacterial DNA [69, 70]. Finally, our goal was not to 
define a new test to replace synovial or tissue culture but 
to define the local and systemic MPS response and influ-
ence the immunologic definition of infection itself. This is 
particularly important, because ultimately the 2018 MSIS 
criteria are immunologic criteria that represent the local 
and systemic neutrophil response only [1]. Hence, a dor-
mant infection was defined as a joint replacement with a 
prior infection diagnosed by the 2018 MSIS criteria, that 
underwent implant resection and completion of 6 weeks 
of microbe-specific intravenous antibiotic therapy, that 
was subsequently reimplanted after being deemed infec-
tion free using the same 2018 MSIS criteria at the end of 
a > 6  week antibiotic holiday, and at reimplantation had 
a persistent local or systemic MPS response that mim-
ics the MPS response present at the time of an active 
infection.

Pseudobulk and single cell RNASeq
Raw sequence files from two different batches were 
processed using SevenBridges genomics workflow. 
The raw counts were then loaded into R using the Seu-
rat v4.9.9 package for further data processing [71]. Cells 
were retained if they met the following criteria: fewer 
than 1 ×  105 unique molecular identifiers and more than 
three raw expression counts on CD45. No mitochondrial 
chromosomes were presented in the expression matrix. 
The Seurat objects from each batch were merged. After 
that, SCTransform version 2 (v0.4.0) with glmGamPoi 
method was performed [72, 73]. The unique molecu-
lar identifiers and gene numbers served as regression 
variables in SCTransform, an R package for modeling 
single-cell UMI expression data using regularized nega-
tive binomial regression. Next, we performed principal 
component analysis (PCA), and the resulting principal 
component (PCs) were corrected and harmonized using 
the Harmony algorithm to integrate datasets from differ-
ent batches [74]. We then performed uniform manifold 
approximation and projection using the top 30 corrected 
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PCs from Harmony and applied the Louvain algorithm to 
cluster the cells. Before implementing automatic cell type 
annotation with SingleR v2.0.0 [75], we initially extracted 
macrophage subtype data and labels from Blueprint/
ENCODE data [75–77]. Subsequently, we created the 
reference set by integrating these data with the Monaco 
immune data [75]. We used the FindAllMarkers func-
tion with 10% of a minimum percentage in either of the 
two groups of cells and a minimum of 0.25 of  log2 fold 
changes to find the marker genes for each cell type. Pair-
wise comparisons on the relative abundance in each cell 
type were done using the Wilcoxon rank sum test embed-
ded in the ggpurb v0.6.0 R package. Raw read counts in 
the single-cell dataset were aggregated into a pseudobulk 
dataset by summing the counts across all cell types.

Correlation of sample counts to cellular group
The variance in raw expression counts was stabilized 
using Variance-Stabilizing Transformation (VST) in the 
DESeq2 R package. Agglomerative hierarchical clustering 
of the dataset was computed using the Agnes function 
with Ward’s method in the cluster R package. The dataset 
was then transformed into lower-dimensional data using 
the first two principal components, PC1 and PC2.

Pseudobulk differential expressed (DE) analysis
We first performed three DE analyses to identify DE 
genes in the dormant infection group compared to the 
infected or uninfected samples. Subsequently, we com-
pared the dormant group against the combined infected 
and uninfected groups to pinpoint unique DE genes dur-
ing dormant infection. For the DE analyses above, genes 
with a  log2 fold change of one or more and an adjusted 
p-value under 0.05 (values generated by the negative 
binomial generalized models and Wald test employed by 
DESeq2 v1.42.1) were considered significant. These sig-
nificant genes were then used to perform gene set enrich-
ment analysis (GSEA) of gene ontology (GO) terms and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways.

Gene set variation analysis (GSVA)
We utilized non-normalized expression data (integer 
counts) to calculate GSVA scores for pathways derived 
from GO terms and KEGG using the GSVA method in 
GSVA v1.50.5 [78]. The parameters for GSVA were set 
with a minimum size of 5, a maximum size of 500, and 
kernel density estimation set to Poisson. DE analyses 
were performed using the limma package for two com-
parisons: infected vs. dormant infection and uninfected 

vs. dormant infection [79]. Only pathways with a false 
discovery rate (FDR) < 0.01 were considered statistically 
significant.

Assessment of polarization
To quantify the score of the signature gene set of M1/
M2 polarization, we adopted the signature gene sets 
described by Sun et  al. [80] and utilized the GSVA 
parameters detailed previously in our methods. We 
then performed pairwise comparisons of the three 
groups. For these comparisons, we utilized t-test 
function and adjusted p-values using adjust_pvalue 
function from the rstatix v0.7.2, applying the Benjamin-
Hochberg correction method for controlling the FDR. 
Significance was determined at a strict threshold for 
FDR < 0.01 allowing us to identify statistically signifi-
cant differences in polarization across the studied cel-
lular groups.

Inflammatory synovial fluid and circulating plasma 
proteomics
The concentration of 96 plasma proteomic analytes was 
determined using a highly multiplexed platform (Olink 
Proteomics, Immuno-Oncology Panel from intra-oper-
ative synovial fluid and pre-operative plasma samples 
matched to the tissue samples from each patient via 
proximity extension [81]. Pairwise comparisons on each 
proteomic analyte with respect to normalized protein 
expression (NPX,  log2) were done using a Welch two-
sided t-test embedded in the Olink Statistical Analysis 
Application. Only proteomic analytes with an adjusted 
p-value < 0.05 were considered statistically significant.

Results
The MPS and neutrophil responses differ by infected state
Our analysis compared the MPS response in local 
tissue samples from joint replacements with different 
infection statuses: active infections, previously 
infected joints deemed “infection-free” prior to 
re-implantation surgery, and uninfected controls. The 
cellular distribution of the MPS response in the subset 
of joints with dormant infections resembled that of 
actively infected joints (p = 0.843, Chi-square test) 
but was significantly different from uninfected joints 
(p < 0.001, Chi-square test) (Fig. 2—bottom panel). This 
was observed despite the absence of systemic acute 
phase reactants such as ESR and CRP, which showed 
significant differences (both p < 0.001), and the lack of 
synovial neutrophil recruitment as indicated by sWBC, 
PMN%, SαD, and culture results (all p < 0.001, t-tests) 
(Fig.  2—top panel). Three prior infections (3/6, 50%) 
seem to have an MPS response similar to an active 
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infection, while the other three (3/6, 50%) appear have 
an MPS response similar to the uninfected controls. 
Only one patient in the dormant infection group as 
identified by the MPS (1/3, 33% v. dormant and 1/6, 
17% v. prior infection) developed a subsequent S. 
aureus infection after reimplantation and was placed 
on lifelong antibiotic suppression.

The cellular composition of dormant infection
In dormant infections, the count of classically 
activated M1 macrophages was significantly reduced 

to 168.0 ± 134.5 cells (59%), compared to 723.2 ± 895.6 
cells (84%) in uninfected joints (p < 0.001, Fischer’s 
test) (Fig.  2—bottom panel). Alternatively activated 
M2 macrophages were also fewer: 12.3 ± 7.3 cells (5%) 
versus 105.7 ± 147.4 cells (10%) in uninfected controls 
(p = 0.023, Fischer’s test) (Fig.  2—bottom panel). 
Conversely, there was an increase in classical monocytes 
(16.0 ± 4.6 cells [8%] vs. 2.2 ± 1.9 cells [1%], p < 0.001, 
Fischer’s test), myeloid dendritic cells (32.7 ± 16.0 cells 
[14%] vs. 10.2 ± 7.8 cells [2%], p < 0.001, Fischer’s test), 
regulatory T-cells (2.3 ± 1.2 cells [1%] vs. 0.0 ± 0.0 cells 

Fig. 2 The Musculoskeletal Infection Society (MSIS) criteria were used to subdivide clinical tissue samples from patients with (red) 
and without (blue) an active infection (top panel). The uninfected samples included cases with and without a previous infection and are 
both marked in blue. Single‑cell transcriptomic expression from synovial tissue was used to re‑characterize each clinical tissue sample (bottom 
panel). Samples previously deemed “infection‑free” after a prior infection using the polymorphonuclear neutrophil (PMN) response, were able to be 
subdivided into two subpopulations based on their immunologic phenotype. One group was statistically similar to the uninfected cases (p = 0.902, 
Chi‑squared) and remains marked in blue, while another group, dormant infections, was statistically similar to an active infection (green, p = 0.843, 
Chi‑squared) and is now marked in green



Page 7 of 19Manasherob et al. Journal of Translational Medicine         (2024) 22:1041  

[0%], p < 0.001, Fischer’s test), natural killer cells (2.7 ± 2.1 
cells [1%] v. 0.3 ± 0.8 cells [0%], p = 0.009, Fischer’s test), 
and plasmacytoid dendritic cells (1.7 ± 1.2 cells [1%] v. 
0.2 ± 0.4 cells [0%], p = 0.005, Fischer’s test) all showed a 
significant increase (Fig. 2—bottom panel).

Cell type specific differential gene expression 
during dormant infection
Hierarchical cluster analysis revealed that the single-
cell gene expression of classically M1 and alternatively 
M2 activated macrophages as well as myeloid dendritic 
cells can independently distinguish the dormant and 
uninfected patient populations with myeloid dendritic 
cells outperforming macrophages (Fig.  3). While FN1 
expression in M1 and M2 macrophages appeared to be 
a hallmark of uninfected tissue and expression of HLAs 
in both macrophage subtypes and myeloid dendritic 
cells appeared to be a hallmark of infection, despite 
none of the MPS lineages distinguishing dormant from 
active infection (Fig. 3).

The single-cell transcriptomic analysis showed 
significant alterations in gene expression patterns 
between dormant infection and uninfected controls. 
Classically activated M1 macrophages (Fig.  4A, 
Supplemental Table  1) and alternatively activated 
M2 macrophages (Fig.  4B, Supplemental Table  2) in 
dormant infections exhibited significant changes in 
genes related to macrophage polarization (FOSB, JUN), 
neutrophil recruitment (C1QA, C1QB, LY86, SELL, 
CXCL5, CCL20, CD14), immune checkpoint regulation 
(IFITM3, CST7), and T-cell response (VISIG4, CD28, 
FYN, LAT2, FCGR3A, CD52). Myeloid dendritic cells 
in dormant infections also showed notable differences 
in mRNA expression, affecting neutrophil recruitment 
(C1QA, C1QB, ITGAM), immune checkpoint 
regulation (IFITM2, IFITM3, CST7, THBS1), and T-cell 
response (VISIG4, V-set immunoglobulin domain 
containing 4) (Fig. 4C).

In addition, the single-cell transcriptomic analysis 
revealed a few alterations in gene expression patterns 
between dormant and active infection all involving the 
T-cell response. Th1/17T-cells exhibited significantly 
higher expression of thymidylate synthase (TYMS, 9.97 
 log2FC, p < 0.001), plasmid dendritic cells exhibited 
significantly higher expression of T-cell leukemia/

lymphoma protein 1A (TCL1A, 8.46  log2FC, p < 0.001), 
and non-classical monocytes exhibited significantly 
higher expression of VSIG4 (8.20  log2FC, p < 0.001) in 
dormant infections (data not shown).

Cellular polarization
Within the M1 macrophage population, the magnitude 
of M1 polarization was higher in both dormant and 
active infection when compared to uninfected samples 
(FDR < 0.001) (Fig.  5—top panel). However, dormant 
infection M1 macrophages did not polarize as strongly 
as those in active infection (FDR = 0.008) (Fig.  5—top 
panel). Though dormant infection M1 polarization was 
more similar to active infection than uninfected samples, 
it is possible that this is reflective of a less effective M1 
macrophage response in the context of a dormant 
infection. Of note, degree of M2 polarization was not 
significantly different either macrophage subtype or 
myeloid dendritic cells between any groups (Fig.  5—
bottom panel).

The periarticular RNA expression during dormant infection 
is unique
Bulk periarticular RNA transcriptomic analysis further 
supported these findings, revealing significant differences 
in gene expression between dormant infections and 
uninfected joint replacements. This analysis identified 
one gene (VSIG4) shared between dormant and active 
infection at the tissue level as well as unique set of 13 
genes (4 increased, 9 decreased) that distinguish dormant 
infection from both active and no infection at the tissue 
level (Fig.  6A). Of particular interest, the expression 
of 6 genes (VSIG4, LAMP1, QPCT, C1QB, TNFSF13, 
and JUN) can be used to distinguish the transcriptomic 
signature of a dormant infection from an uninfected joint 
replacement (Fig. 6B) highlighting the potential for these 
markers in diagnosing a dormant infection.

TNF and IL17 activation affect neutrophil function 
during dormant infection
Dormant infections showed an innate immune response 
indicative of defense against bacteria with simultaneous 
inactivation of the cellular functions required for 
bacterial eradication. Dormant infections displayed an 
upregulation of inflammatory pathways involved in the 

Fig. 3 Hierarchical clustering of the single‑cell gene expression from classically activated M1 and alternatively M2 activated macrophages as well 
as myeloid dendritic cells each independently distinguish the uninfected tissue samples (blue circle) from the infected (red circle) and dormant 
infection (green) samples for which the 95% confidence intervals tend to overlap demonstrating their similarity with respect to principal 
components (PC) 1 and 2. Loadings plot is overlayed to visualize features defining PC1 and PC2 and directionality relative to the localization 
of uninfected, infected, and dormant infection groups along these components

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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activation of TNF and IL-17 signaling (FDR < 0.01) when 
compared to uninfected (FDR < 0.01 for both, Fig. 7A) and 
infected (FDR < 0.01 or both, Fig. 7B) joint replacements. 
Dormant infections also lead to an upregulation 
of 4 pathways involved in neutrophil recruitment 
(granulocyte and neutrophil migration and chemotaxis, 
FDR < 0.01 for all, Fig.  7B), yet we also saw inactivation 
of neutrophil function related to extracellular trap 
formation (FDR < 0.01) and removal or Staphylococcal 
pathogens (FDR < 0.01, Fig.  7B). This is reinforced by 
the observation that dormant infections appeared 
statistically similar to infected joint replacements yet fail 
to recruit functional neutrophils (Fig. 7C).

An increase in synovial CXCL5 is associated with dormant 
infection
Synovial inflammatory proteomics comparing dormant 
infections and uninfected controls revealed 3 proteins 
(Fig.  8A). The combination of increased CXCL13 
(p = 0.003, t-test) and CXCL5 (p = 0.011, t-test) along 
with depleted IL7 (p = 0.039, t-test) within synovial fluid 
strongly. This suggests the establishment of a chronic 
inflammatory state by the MPS during a dormant 
infection. The local expression of these 3 proteins within 
the synovial fluid can be used to distinguish the synovial 
proteomic signature of a dormant infection from an 
uninfected joint replacement (Fig. 8A).

Fig. 4 Volcano plot highlighting the significant transcriptomic changes (red dot with the top 20 transcripts labeled and the remainder 
of the significant transcripts are listed in Supplemental Tables 1–3; the green and grey dots represent transcripts that did not reach significance) 
in A classically activate M1 macrophages, B alternatively M2 activated macrophages, C myeloid dendritic cells, and D in the tissue via pseudobulk 
analysis. Arrows indicate genes that exceeded the presented axes and are listed in Supplemental Tables 1 and 2
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Dormant infections display signs of systemic bacterial 
tolerance and chronic inflammation
Plasma inflammatory proteomics comparing dormant 
infections and uninfected joint replacements revealed 
9 proteins (Fig.  8B) suggesting a chronic inflammatory 
state (EGF, GZMN, FGF2, PTN, MMP12) during dor-
mant infection that involves a reduction in neutrophil 
recruitment (CXCL5, p = 0.006, t-test), antigen presen-
tation (LAMP3, p = 0.047, t-test), and T-cell function 
(CD28, p = 0.045, t-test; CD70, p = 0.002, t-test) seen dur-
ing the development of bacterial tolerance. The systemic 
expression of these 9 proteins within circulating plasma 
can be used to distinguish the systemic proteomic sig-
nature of a dormant infection from an uninfected joint 
replacement (Fig. 8B).

Discussion
Our findings underscore the complex immune dynam-
ics in joint replacements, challenging the traditional 
diagnostic focus on neutrophil responses and pointing 
towards the importance of a more nuanced understand-
ing of the MPS response after surgery. Definitive diag-
nostic criteria for infected joint replacements have been 
difficult to establish. The most widely accepted system is 
the 2018 update to the MSIS criteria, which has a sensi-
tivity of 97.7% and specificity of 99.5% utilizing a combi-
nation of clinical features, serum and synovial analyses, 
as well as culture results [1]. While these criteria have 
agreement and even consensus [2], they have failed to 
account for the possibility of a biofilm-mediated dormant 
infection. We used paired transcriptomic and proteomic 

Fig. 5 M1 (top panel) and M2 (bottom panel) polarization of M1 macrophages, M2 macrophages, and myeloid dendritic cells displayed as median 
and interquartile range in dormant infection (green), active infection (red), and uninfected samples (blue). The symbols in the plots represent 
statistical significance as follows: non‑significant (ns), FDR < 0.001 (*), FDR < 0.0001 (**), and FDR < 0.0001 (***)
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data to establish three novel sets of candidate biomarkers 
at the tissue, synovial fluid, and systemic level for bacte-
rial tolerance indicative of the immune response to a dor-
mant infection after surgery.

Dormant infections display a local and systemic 
state of chronic inflammation. Dormant infections 
display M1 polarization as well as a local increase in 
CXCL13 and CXCL5, along with depleted IL7 within 
synovial fluid, strongly suggesting chronic inflammation 

(Fig.  8A). CXCL13, also known as B lymphocyte 
chemoattractant (BLC), plays a crucial role in the 
migration of lymphocytes into inflamed tissues. CXCL5, 
also called epithelial-derived neutrophil-activating 
peptide 78 (ENA78), participates in the recruitment of 
neutrophils. The presence of IL7 depletion indicates 
a dysregulation of lymphocyte homeostasis, which 
is common in autoimmune diseases like rheumatoid 
arthritis. IL7 is also important for the survival and 

Fig. 6 A The Venn diagram looks at unique and overlapping gene expressions after bulk transcriptomic analysis, comparing dormant infection 
(green) to active (red) and no infection (blue). B Volcano plot highlighting the transcriptomic changes of the 13 unique (white boxes) and 1 
overlapping (grey box) genes expressed during dormant infection (red dot with transcript labeled; the green and grey dots represent transcripts 
that did not reach significance) when compared to samples with and without an infection
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proliferation of T-cells, and its depletion can contribute 
to the dysregulation of the immune response. These local 
changes are also coupled with systemic depletion of EGF, 
GZMN, FGF2, and accumulation of PTN and MMP12, 
indicating the presence of unresolved tissue damage 
and repair cycle seen during chronic inflammation. 
The expression of FN1 by macrophages in uninfected 
samples suggests the coordination of fibroblast activity 
involved in tissue healing that is not present during 
dormant or active infection [82]. The expression of CD63 
and S100A10 by myeloid dendritic cells in uninfected 
samples suggests resolution of toll-like receptor signaling 
and a reduction inflammatory cell recruitment [83, 84]. 
HLA and SPP1 expression suggests M2 polarization 
and antigen presentation may be shifting despite a lock 
of a change in overall M2 polarization during dormant 
infection [85, 86].

Dormant infections likely establish bacterial tolerance. 
We identified strong transcriptomic signs of MPS-
mediated bacterial tolerance that extended beyond 
clinical neutrophil recruitment to neutrophil function, 
macrophage and dendritic cell differentiation, antigen 

presentation, and even lymphocyte function [18]. Local 
macrophage and myeloid expression revealed a process 
modulating neutrophil recruitment (C1QA, C1QB, LY86, 
SELL, CXCL5, CCL20, CD14, ITGAM), macrophage 
polarization (FOSB, JUN), immune checkpoint 
regulation (IFITM2, IFITM3, CST7, THBS1), and T-cell 
response (VISIG4, CD28, FYN, LAT2, FCGR3A, CD52) 
during dormant infection. The systemic depletion of 
LAMP3 (Lysosomal-associated membrane protein 3) 
suggests impaired antigen presentation, affecting the 
adaptive immune response, while the systemic depletion 
of CD28 and CD70 indicates a decrease in lymphocyte 
activation and function. Surprisingly, MPS-mediated 
bacterial tolerance may allow as many as 50% of joint 
replacements with a dormant infection to be misclassified 
as “infection-free” prior to re-implantation, thus limiting 
the prognostic capabilities of all current diagnostic tests 
that remain over-reliant on the neutrophil response to 
diagnose late infection in particular [6].

We observed an increase in IL17 activity associated 
genes in the cohort of patients with a dormant infection, 
highlighting this cytokine’s critical role in both immune 
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Fig. 7 Heatmap of gene set variation analysis (GSVA) using gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways comparing dormant infection to samples A with and B without an infection based on  log2 fold change (FC) as well as false discovery rate 
(FDR). C) Hieratical clustering of GSVA demonstrating comparing dormant infection to active infection (left panel) supports their similarity yielding 
a normally distributed inflammatory response to infection. However, comparing dormant infection to uninfected controls (right panel) suggest 
the emergence of a distinct immune signature during dormant infection
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Fig. 8 Statistically significant (Welch two‑tailed t‑test) proteomic changes displayed as median and interquartile range of normalized protein 
expression (NPX, in  log2 units) as measured by proximity extension assay on in A) synovial fluid and B) plasma comparing dormant infection (green) 
to uninfected samples (blue)
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defense and pathology. IL17 facilitates the recruitment 
of neutrophils and other immune cells to infection sites, 
enhances antimicrobial peptide production, and main-
tains epithelial barrier integrity, thus playing a pivotal 
role in controlling infections [87]. However, in chronic 
infection, persistent IL17 activation can lead to sus-
tained inflammation and tissue damage, contributing to 
diseases like chronic obstructive pulmonary disease [88] 
and inflammatory bowel disease [89–93]. IL17 often acts 
synergistically with TNFα, IL1β, and IL6, amplifying its 
inflammatory response, while its production is regulated 
by the IL23/IL17 axis [94, 95]. In the context of dor-
mant infection, we observed increased KEGG pathways 
representing IL17 and TNFα signaling (Fig.  7C). GOBP 
pathway comparisons between dormant and uninfected 
samples suggest a strong upregulation of the granulo-
cyte/neutrophil axis including increased migration and 
chemotaxis (Fig.  7B). IL17, CXCL1, and CXCL5, which 
were elevated in dormant infections, are known signals 
for neutrophil attraction, yet we observe a reduction in 
signaling related to neutrophil trap formation during 
a dormant infection when evaluating KEGG pathways 
(Fig.  7C). This is intriguing since these patients were 
deemed “infection-free,” yet these patients show a slight 
elevation in the local and systemic neutrophil response 
and culture-negative results, indicating low-grade 
inflammation that does not manifest into full-blown 
criteria-based infection. Paradoxically, dormant infec-
tions also exhibited downregulation of signaling related 
to neutrophil extracellular trap (NET) formation indicat-
ing bacterial regulation of immune-mediated clearance 
mechanisms (Fig. 7B) [96–102].

The release of NETs is an attempt by neutrophils to trap 
and kill bacterial, viral, parasitic, and fungal pathogens 
and constrain an emerging infection. NETs also induce 
uncontrolled inflammation, thrombosis, and tissue 
damage [103]. NETs are extracellular DNA fibers bearing 
histones, granular proteins (myeloperoxidase, elastase, 
and defensins), and cytosolic proteins (calprotectin and 
cathelicidins) [97, 100, 104]. There is dynamic interplay 
between the coagulation cascade and NETs [103, 
105]. This is of particular interest, because S. aureus 
is proficient in overcoming the innate immune system 
via is its ability to manipulate the coagulation cascade 
[106]. S. aureus induces fibrin formation by activating 
prothrombin via the coagulases, von Willebrand factor 
binding protein and staphylocoagulase [107]. In addition, 
S. aureus binds, activates, and aggregates platelets via its 
interaction with components of the coagulation system 
[106, 107]. While NETs trap and kill pathogens, they 
can also act as a scaffold for biofilm formation [97–99]. 
It has been hypothesized that neutrophils that are 

primed to form NETs are no longer able to phagocytize 
bacteria allowing them to circumvent the innate immune 
defense [100, 101, 104]. It is also plausible that bacteria 
promote their own survival by reducing NET formation 
rather than enhancing it (Fig.  9A). In fact, extracellular 
adherence protein (EAP) secreted by S. aureus can 
reduce NET formation, destroy released NETs promoting 
biofilm formation, and interact with NET microbicidal 
components to limit the antimicrobial potential of NETs 
[108–113]. Finally, S. aureus secretes nucleases (Nuc and 
Nuc2) that digest extracellular DNA allowing S. aureus to 
evade macrophage immunosurveillance [99, 114–117].

This study has limitations that should be considered 
when interpreting the results. First, the presence of 
biofilms in joint replacements directly impacts the 
detection and analysis of infections since biofilms shield 
bacteria from immune responses and antimicrobial 
treatments, potentially leading to an underestimation 
of infection severity or prevalence in our study [30, 67, 
68]. Second, this is a pilot study, and the corresponding 
sample size is relatively small, with only thirteen 
patients. This limited sample size can introduce sampling 
bias, affecting the generalizability of the findings. 
Larger, more diverse cohorts are needed to validate 
the results and ensure they are representative of the 
broader population after multivariate control. Third, 
while molecular methods offer a culture-independent 
approach to detecting infections, they may not capture 
all aspects of the microbial landscape, especially slow-
growing or difficult-to-culture organisms. This limitation 
underscores the need for complementary methods to 
provide a comprehensive understanding of infection 
dynamics. Fourth, we did not account for variations in 
preoperative and postoperative prophylactic treatments 
and other medical interventions, which could modulate 
the inflammatory response and influence the study 
outcomes. Standardizing these factors or adjusting 
for them in the analysis is crucial for more accurate 
interpretations. Fifth, computational simulations 
and modeling could enhance the understanding of 
the complex interactions within the MPS and the 
inflammatory response. Simulations could also help 
predict outcomes and optimize treatment strategies, but 
this study did not incorporate such approaches. Sixth, 
we identified associations between the transcriptomic 
and proteomic profiles of the MPS-based on infection 
status, but these do not establish causality. Future studies 
should focus on validating our findings with a larger 
cohort and longitudinal study to assess the prevalence, 
characteristics, and progression of dormant infections in 
joint replacements as well as the possibility of temporal 
resolution of dormant infection. However, the only 
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Fig. 9 A Schematic understanding of dormant infection (green) as an MPS‑mediated IL17 response to biofilm inhibiting PMN recruitment 
and function when compared to patients with (red) or without (blue) and active infection. B Schematic understanding of how focusing 
on the MPS‑mediated response as a biomarker of dormant infection (green) enables the screening, diagnosis, and prognosis of dormant infection 
and identifies a novel paradigm of immuno‑prophylactic and immuno‑modulation
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re-infection to arise from our cohort was identified 
after a concomitant dormant infection. Multi-center 
studies involving diverse patient populations will help 
establish the sensitivity and specificity of the proposed 
biomarkers with respect to more traditional diagnostic 
tests. Targeting the IL17 pathway, both in  vitro and 
in vivo, is required to elucidate its mechanistic role in the 
establishment and maintenance of a dormant infection. 
Additionally, the impact of immune checkpoint inhibitors 
like anti-PD-L1 on enhancing immune responses against 
dormant infections should be investigated in pre-clinical 
and clinical models. Integrative multi-omics analyses 
combining transcriptomic, proteomic, metabolomic, and 
microbiome data will provide comprehensive insights 
into molecular mechanisms, aiding in the development of 
more robust, non-invasive diagnostic tools for dormant 
infection. The implementation of personalized immune 
profiles in the determination of risk is essential in this 
population. However, the real value lies in the ongoing 
refinement of the MSIS criteria to incorporate MPS-
based diagnostic strategies to optimize clinical outcomes 
(Fig. 9A).

The identification of a pre-disease state is often 
required to reduce the clinical and monetary impact of 
final disease state [23, 24]. The onset of many complex 
diseases initially appears abruptly (e.g., cancer, heart fail-
ure, cirrhosis, asthma), but there often exists a revers-
ible pre-disease state prior to the final disease state (e.g., 
carcinoma in  situ, hypertension, high liver enzymes, 
abnormal pulmonary function tests) [23, 24]. For infected 
joint replacements, we believe dormant infection repre-
sents such a pre-disease state defined by the inability to 
detect the neutrophil response to an active infection that 
has the potential for an active infection to emerge later 
(e.g., when antibiotics stop, immunosuppressives start, or 
with new surgery/trauma) [3–6, 30, 54, 64–66]. Based on 
our findings, we estimate that as many as half of all joint 
replacements may be misclassified as uninfected using 
neutrophil-dominant diagnostic criteria and may actu-
ally harbor persistent MPS-dependent bacterial tolerance 
response to a biofilm-mediated dormant infection that 
alters neutrophil recruitment and function. Hence, the 
accurate identification of dormant infections is of criti-
cal importance for cost effective pre-operative screening, 
establishing intra-operative or post-infectious progno-
sis, and initiating pre-operative, post-operative, or post-
infection immuno-modulatory prophylaxis (Fig. 9B) [24]. 
It should also be noted that infected joint replacements 
represent a broader category of implant-associated infec-
tions, and the characterization of dormant infections 

during a joint replacement is likely generalizable to non-
orthopaedic implants (pacemakers, abdominal mesh, 
breast implants) as well as other infections where bacte-
ria use non-viable tissue as an “implant” (osteomyelitis, 
chronic wounds).
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