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that 250,000-500,000 people suffer from SCI each year. 
Sadly, we currently lack a cure for SCI, although substan-
tial efforts support a wide range of preclinical research 
aims [4, 5]. A recent reports from the Courtine lab have 
defined a neuronal subpopulation responsible for func-
tional regeneration after epidural electrical stimula-
tion in mice [6]; nevertheless, we still require concerted 
efforts in basic research to elucidate the dynamic, com-
plex molecular mechanisms that underlie the distinct 
stages of SCI. Likewise, an improved understanding of 
the mechanisms at play (and their biological relevance) in 
the early stages after SCI is needed to control evolution 
in acute cases and achieve functional recovery in those 
patients suffering from chronic injuries.

Introduction
Spinal cord injury (SCI) leads to alterations in the motor, 
sensory, and autonomic systems immediately below the 
affected spinal segment, which represent a devastating 
blow to patients’ quality of life due to the loss of volun-
tary movement and associated physiological dysfunction 
[1–3]. The World Health Organization (WHO) estimates 
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Spinal cord injury (SCI) is a devastating condition that leads to motor, sensory, and autonomic dysfunction. Current 
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functional levels, focusing on biomarker gene identification. Our approach involved a systematic review, individual 
transcriptomic analysis, gene meta-analysis, and functional characterization. We compiled a total of fourteen 
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the exploration and visualization of all generated results (https:/ /metasc i-cbl.s hiny apps.io/metaSCI). Overall, we 
present a transcriptomic reference and provide a comprehensive framework for assessing SCI considering severity 
and time perspectives, all integrated into a user-friendly tool.
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Transcriptomics represents a widely used technol-
ogy for the study of pathological states such as SCI; this 
technique provides a comprehensive view of the cellular 
responses to a given condition from a systems biology 
perspective and allows the identification of differentially 
expressed genes (DEGs). Unfortunately, statistically sig-
nificant DEGs from studies can display distressingly little 
overlap when distinct research groups study the same 
biological system [7]. This lack of robustness and repro-
ducibility can lead to conflicting or inconclusive results. 
Although many transcriptomic studies of SCI exist, 
we still lack consensus regarding the description of the 
injury-induced transcriptomic profile and its functional 
correlation, which hinders the identification of thera-
peutic targets with sufficient depth over time and based 
on injury severity due to heterogeneity between injuries/
models.

To solve such issues, we propose a novel characteriza-
tion of SCI through a meta-analysis of transcriptomic 

studies. A meta-analysis represents an integrative 
approach that allows for a more precise measurement of 
the effect of interest than individual studies, thus increas-
ing statistical power, and considers the variability of indi-
vidual studies to provide more consistent results [8]. We 
based our strategy on the systematic review and selection 
of public transcriptomic studies performed in rats since 
2004. We grouped samples based on severity and time 
after injury, allowing the characterization of SCI in two 
dimensions. We subsequently processed and analyzed 
all datasets similarly to avoid introducing biases associ-
ated with bioinformatics pipelines [9]. We performed 
a gene expression meta-analysis to integrate individual 
differential gene expression (DGE) analysis results, pro-
viding a consensus gene expression signature for each 
group. We identified specific severity- and phase-asso-
ciated biomarker genes from the generated gene expres-
sion patterns. We then functionally characterized these 
transcriptomic profiles to estimate the dysregulated 
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pathways, infer transcription factor (TF) activity, and 
construct gene co-expression networks. We bioinfor-
matically validated the results with two external datas-
ets and experimentally by quantitative (q-)PCR. We also 
explored the potential transferability of severity-specific 
biomarker genes found in rats to predict injury prognosis 
in human blood samples. Finally, we created the Meta-
SCI app, a platform that allows the research community 
to access and deeply explore all generated results.

Results
Identifying gene consensus signatures based on severity 
and time
We first performed a systematic review and selection 
of studies in GEO [10] and ArrayExpress [11] databases 
following the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines [12]. 
After applying inclusion and exclusion criteria, we finally 
selected 14 studies and 273 samples for our meta-analysis 
(Fig. S1; Table S1). Given the diversity of studies, we stan-
dardized metadata to create experimental groups with 
uniform nomenclature. We categorized injury sever-
ity into moderate (M) and severe (S) groups (Table S2). 
We established four injury phase groups based on time 
after injury and sample collection: acute (0–3 days, T1), 
subacute (4–14 days, T2), early chronic (15–35 days, 
T3), and late chronic (> 35 days, T4) [3, 13, 14]. Controls 
comprised samples from sham-operated or non-operated 
naïve rats. Table S3 reports sample identifiers and anno-
tations, while Table S4 and Fig. S2 detail sample distribu-
tion into the distinct experimental groups.

We followed a common pipeline that included data 
preprocessing, exploratory analysis, and DGE analysis 
for the individual analysis of the selected datasets. Since 
we aimed to characterize SCI in all phases and analyze 
the influence of injury severity, we compared each injury 
group against the control group within their study to 
identify DEGs. The eight comparisons performed and 
the abbreviations used for simplicity are: M1 (Moderate 
Acute [T1] vs. Control), M2 (Moderate Subacute [T2] vs. 
Control), M3 (Moderate Early chronic [T3] vs. Control), 
M4 (Moderate Late chronic [T4] vs. Control), S1 (Severe 
Acute [T1] vs. Control), S2 (Severe Subacute [T2] vs. 
Control), S3 (Severe Early chronic [T3] vs. Control), and 
S4 (Severe Late chronic [T4] vs. Control).

By conducting a meta-analysis, we integrated DGE 
analysis results for each comparison to obtain a tran-
scriptional consensus signature for each experimental 
group. Fig. S3A reports the number of studies per group, 
while Fig. S3B displays the high number of significant 
genes (false discovery rate [FDR] < 0.05) in each compari-
son in our study. The “Individual analysis” and “Meta-
analysis” modules of the Meta-SCI app contain a detailed 
list of all results.

We performed a principal component analysis (PCA) 
and hierarchical clustering analysis of transcriptional 
consensus signatures to generate an overview of similari-
ties between groups. Together, we observed a separation 
between severe and moderate injuries, with similarities 
between M1 and S1, suggesting the acute phase as the 
most distinctive temporal phase irrespective of severity 
(Fig. 1A, B).

Identification of predictive biomarker genes for severity 
assessment
To identify severity-specific biomarker genes, we com-
pared transcriptional consensus signatures of the 
four severe injury groups against the four moderate 
injury groups (Table S5), identifying 282 genes with an 
FDR < 0.1 (Table S6). Interestingly, the hierarchical heat-
map revealed higher gene dysregulation (upregulated or 
downregulated) in severe compared to moderate inju-
ries (Fig. S4), resulting in a clear separation of two dis-
tinct heatmap branches based on severity. Figure 1C, D 
illustrate that the top 10 most significantly altered genes 
(Srpx2, Hoxb8, Acap1, Snai1, Aadat, Ppic, Lrrc17, Map7, 
Actg2, and H19) enabled a clear separation between mod-
erate and severe injuries, with PC1 explaining 93% of the 
variance in the PCA. The expression patterns of the top 
5 severity-specific biomarker genes demonstrated con-
sistent and more heightened dysregulation over time fol-
lowing severe injury (Fig. 1E), which represents a suitable 
pattern for injury prognosis.

We divided the list of 282 potential severity-specific 
genes into upregulated and downregulated genes and 
conducted a protein-protein interaction (PPI) analysis 
to evaluate functional relationships. The PPI network 
of downregulated genes (152) revealed enrichments 
in functions related to nervous system development 
and the regulation of trans-synaptic signaling (Fig. S5). 
Meanwhile, the PPI network of upregulated genes (130) 
exhibited enrichment in functions related to extracellu-
lar matrix organization, animal organ development, and 
anatomical structure morphogenesis (Fig. S6).

Effective group classification using phase-specific 
biomarker genes
To systematically identify phase-specific biomarker 
genes (independent of severity), we compared each phase 
against the remaining phases. Additionally, we investi-
gated potential phase-specific biomarker genes for mod-
erate and severe injury severity (Table S5). Table 1 reports 
the top 10 genes for each comparison. The acute phase 
displayed the most distinct transcriptional signature, 
with 770 genes encountered at FDR < 0.1; meanwhile, the 
other comparisons did not yield significant genes at this 
threshold. Nevertheless, using the top 10 genes with the 
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lowest p-value in each case allowed clear group separa-
tion (Figs. S7–10 and Tables S7–10).

We selected the top 10 genes from the T1, T2, and 
T4 groups to create a phase-specific consensus signa-
ture, resulting in robust group separation (Fig. 1F, G). In 
the PCA plot (Fig.  1F), PC1 separated M1/S1 from the 

remaining groups, while PC2 classified the remaining 
groups into pairs, with more similarity between M3/S3 
and M4/S4, indicating that the selected biomarkers allow 
the identification of the injury phase independently of 
severity. Figure  1G depicts a similar segregation. While 
we identified the top 10 potential biomarker genes for T3 

Fig. 1 Biomarker genes support effective group classification based on severity or phase after injury. (A) PCA plot and (B) hierarchical clustering of logFC 
gene consensus signatures for all groups. (C) PCA reveals a clear separation of groups based on injury severity using the top 10 severity-specific genes 
(93% of variance explained by PC1). (D) The hierarchical clustering of the top 10 genes highlights a clear branching pattern that effectively segregates 
groups based on severity. (E) Gene expression patterns of the top 5 severity-specific biomarkers. (F) PCA plot and (G) hierarchical clustering reveal a 
pairwise temporal classification of groups. (H) Gene expression patterns of a selection of different phase-specific genes - Fosl1 and Ill3 as T1-specific; C1qc 
and Cfp as T2-specific; and Cp as T4-specific
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(demonstrating the segregation of M3/S3 from remaining 
groups), we do not consider them appropriate biomark-
ers (Fig. S8) as their characteristic expression pattern 
depicts a decrease between T2 and T4. This profile could 
be explained by a lack of consensus in results due to data 
heterogeneity rather than a genuine drop in gene expres-
sion during this phase. T3 likely represents a transitional 
phase between T2 and T4 without any expected expres-
sion biological process that peaks in T3, as one might 
anticipate in T2.

The PPI analysis with upregulated T1-specific genes 
revealed enrichment in responses to stress, cell cycle, 
and various metabolic processes (Fig. S11). Notably, 
upregulated genes demonstrated increased expression 
after injury that declined over time (as evidenced by 
gene expression patterns of Fosl1 and Il33 in Fig. 1H, for 
instance). We also detected genes such as Lcat, Vcam1, 
or Fxyd1, which become downregulated in T1 but upreg-
ulated in the following phases. Downregulated genes 
displayed enrichment for processes related to nervous 
system development and lipid metabolism (Fig. S12). 
Overall, these two divergent gene expression profiles 
represent valuable tools to distinguish T1 from the other 
stages. By utilizing the top 10 potential T1-specific genes, 
PCA1 effectively captures 95% of the variance, resulting 
in a distinct separation between M1/S1 and the remain-
ing groups (Fig. S7). T2-specific genes displayed gene 
upregulation peaking in T2 that declined in subsequent 
phases; the Cfp and C1qc complement genes associated 
with secondary immune response [15, 16] exemplify this 
pattern (Fig. 1H). Potential T4-specific biomarker genes 
displayed increased expression from T1 that peaked in 
T4, as seen for Cp (ceruloplasmin) (Fig. 1H). For T2 and 
T4, the enrichment of the top 25 genes (arbitrary thresh-
old) revealed immune response involvement in T2 (Fig. 
S13) and lipid metabolism enrichment in T4 (Fig. S14). 

Overall, our meta-analysis allowed the successful identifi-
cation of biomarker genes for each injury phase after SCI 
in independent studies with different rat models.

Functional characterization of gene consensus signatures
Next, we conducted three different analyses to char-
acterize the gene consensus signatures obtained in the 
meta-analysis. First, we performed a functional enrich-
ment analysis for each group via gene set analysis (GSA). 
Fig. S15A reports the number of significant functions 
(FDR < 0.05) grouped by database, severity, phase, and 
direction of enrichment. Venn diagrams for moder-
ate and severe injury indicated a high number of shared 
functions between the four time phases for upregulated 
and downregulated functions (Fig. S15B), suggesting 
the existence of dysregulated mechanisms induced by 
the SCI that persist into chronic phases. We used Reac-
tome annotation to classify significantly affected path-
ways to achieve an overview of the biological categories 
most affected after SCI (Fig.  2A). The immune system 
represents one of the most prevalent categories for sig-
nificantly upregulated pathways in all comparisons inde-
pendently of severity. These pathways form part of the 
core of permanent dysregulated pathways, which can 
be explained by the massive infiltration of inflamma-
tory cells during the acute phase, the intrinsic microglial 
activation at the injury site, and a failure to efficiently 
resolve inflammation during the chronic stage [17]. In 
contrast, the elevated presence of pathways related to 
cell cycle, DNA repair, or DNA replication in the acute 
phase decreases over time, which could be explained 
by the proliferation of spinal cord resident cells such as 
microglia and macroglia (astrocytes and oligodendrocyte 
precursor cells) and infiltrating cells such as pericytes, 
fibroblasts or Schwann cells [18–21].

Table 1 Top 10 specific biomarker genes for each severity- and time-associated comparison
Comparison Genes
Severity Srpx2, Hoxb8, Acap1, Snai1, Aadat, Ppic, Lrrc17, Map7, Actg2, H19
T1 Fosl1, Il33, Vcam1, Mx2, Mdk, Ldlr, Hmgcr, Alpk3, Dusp5, Serpina3n
T2 Cfp, Slc46a3, Scn8a, Ly86, Casr, C1qc, Slc2a5, Fgd2, Aif1, Slc7a7
T3 Slc28a2, Iqgap1, Cd14, Nt5dc2, Xdh, Msn, Lyve1, Tmem37, Rdh10, Enpp3
T4 Cp, Rab27a, Rab3b, Cybrd1, Thrsp, Plcb1, Pmp22, Acot2, Cyp27a1, RT1-Db1
M1 Hmgcs1, Fdps, Cd68, Gpx2, Alpk3, Crym, Apln, Slc15a2, Pltp, Ldlr
M2 Mmp8, Cxcl13, Cd8a, Casr, C1qb, RT1-CE4, Fap, Cfp, Mmp7, Slc7a7
M3 Sost, Rbp1, Cd14, Esm1, Hck, Plag1, Fam102b, Atf3, Slc36a3, Itgb8
M4 Thrsp, Ccl3, Tmem204, Calml4, Cpxm2, Ckap2, Ttk, Csf3r, G0s2, Mpz
S1 Fosl1, Il6, Kng2, Tnfrsf12a, Upp1, Myc, Gprc5a, C3, Exo1, Chodl
S2 Apoc1, Cfp, Tnr, Slc28a3, C1qa, Slc46a3, Casr, Postn, Slc40a1, Pnlip
S3 Enpp3, Ccl4, Cd36, Lox, Igsf6, Xdh, Folr2, Msr1, Slc28a2, Rnf4
S4 Mmrn1, Esm1, Anxa8, Crabp2, Bnc2, Igfbp6, Slco2a1, Ptgis, Tspan8, Pde5a
Severity, (S1, S2, S3, S4) vs. (M1, M2, M3, M4); T1, (M1, S1) vs. (M2, M3, M4, S2, S3, S4); T2, (M2, S2) vs. (M1, M3, M4, S1, S3, S4); T3, (M3, S3) vs. (M1, M2, M4, S1, S2, S4); T4, 
(M4, S4) vs. (M1, M2, M3, S1, S3, S4); M1, M1 vs. (M2, M3, M4); M2, M2 vs. (M1, M3, M4); M3, M3 vs. (M1, M2, M4); M4, M4 vs. (M1, M2, M3); S1, S1 vs. (S2, S3, S4); S2, S2 vs. 
(S1, S3, S4); S3, S3 vs. (S1, S2, S4); S4, S4 vs. (S1, S2, S3). Genes in bold are upregulated in each comparison, while the others are downregulated
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Fig. 2 Functional characterization reveals altered pathways and transcription factors across phase and severity after injury. (A) Frequency distribution of 
Reactome categories by phase and injury severity in upregulated and downregulated pathways. This value represents the sum of all significantly altered 
pathways within the same biological category in a comparison. Red squares highlight biological categories of interest. (B) Dotplot of significant dysregu-
lated transcription factors (TFs) in all groups (left) and selected TFs of interest with significantly different activities (right) (Red – activation; blue – deactiva-
tion). (C) Gene expression patterns for Srebf1. (D) Moderate injury - cluster 11, subnetwork 1 - functionally relates to the cell cycle. All subnetwork proteins 
display a functional relationship and exhibit the same expression pattern. Red, green, and purple proteins form physical complexes among themselves. 
(E) Gene expression patterns of green proteins in moderate injury cluster 11, subnetwork 1
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The permanent loss of neuronal system function and 
metabolism characterizes significantly downregulated 
pathways. Regarding metabolism-associated functions, 
the dotplot in Fig. S16 reports the downregulation of 
functions related to fatty acid synthesis, cholesterol syn-
thesis, and the Krebs cycle in all groups, as previously 
described [22, 23].

Fig. S17 reports the downregulation of genes involved 
in cholesterol synthesis in a hierarchical heatmap in 
more detail, demonstrating the more pronounced level 
of downregulation in the chronic compared to the acute 
phase. Our results agree with the findings of Spann et 
al. [22], who reported the significant downregulation of 
the cholesterol biosynthesis pathway and the downregu-
lated expression of genes involved in the production of 
cholesterol (Hmgcs1, Hmgcr, Cyp51, Idi1, and Fdft1). 
We also observed permanent mitochondrial dysfunc-
tion, suggested by the downregulation of functions/path-
ways related to mitochondria and ATP synthesis [23] 
(Fig. S18). The totality of the described events acts to the 
detriment of correct nervous system function and any 
regenerative attempts, as indicated by the large number 
of downregulated functions related to synapse regulation, 
neurotransmitter regulation, or nervous system develop-
ment in all groups (Fig. S19–21).

Next, we estimated TF activity levels based on the 
expression levels of their target genes, using a method-
ology that considers whether TF-target interactions 
activate or repress said target gene (Table S11). Thus, 
the upregulation (respectively downregulation) of tar-
get genes of an activating (respectively inhibiting) TF 
becomes interpreted as TF activation following injury 
[normalized enrichment score (NES) > 0]. Conversely, 
activating (respectively inhibiting) TFs with downregu-
lated (respectively upregulated) target genes are inter-
preted as lost TF function or deactivation following 
injury (NES < 0). We observed a higher prevalence of acti-
vated vs. deactivated TFs in all scenarios (Fig. S22A). This 
finding underscores the more substantial impact on TF 
activation during the early stages after SCI, which gradu-
ally decreases in the chronic phases. Figure 2B (left panel) 
depicts consistently dysregulated TFs shared between 
moderate and severe injury. TFs such as Nfkb1, Stat1, 
and Stat3 become activated during injury progression, 
contributing to processes such as inflammatory response 
modulation [24–26]. This activation is consistent with 
the persistent upregulation of immune system-related 
pathways in the GSA, highlighting their role in sustain-
ing the inflammatory response post-injury. Interestingly, 
Srebf1 exhibits an ever-increasing gene expression pat-
tern (Fig.  2C); however, this TF becomes differentially 
deactivated in all comparisons except M1. Both Srebf1 
and Srebf2 (also deactivated) represent activators of 
lipid metabolism genes [27], which could explain the 

previously described downregulation of fatty acid and 
cholesterol synthesis.

We used the gene consensus signatures matrix (Table 
S16) from moderate and severe injury separately as 
inputs to identify genes with similar expression pat-
terns. We identified 19 (moderate injury) and 18 (severe 
injury) clusters of co-expressed genes and constructed a 
PPI network for each cluster. The extensive constructed 
networks displayed elevated levels of interconnec-
tion, indicating the functional association of genes with 
similar expression patterns. To gain deeper insights, we 
generated 261 subnetworks, conducted a functional 
enrichment analysis for each subnetwork, and then clas-
sified them into manually predefined biological catego-
ries of interest. Among the 261 generated subnetworks, 
we successfully classified 153 (Fig. S23). The remaining 
108 subnetworks comprised only a few proteins without 
enriched functions. As observed in the GSA results, we 
found the prominent representation of categories such as 
nervous system, immune system, and metabolism; more-
over, we observed notable functional similarity across 
severity levels. Figure 2D depicts cluster 11, subnetwork 
1 for moderate injury, comprising genes related to the cell 
cycle (proteins in green, red, and purple also form a phys-
ical part of the same complexes). These genes possess an 
expression pattern characterized by an initial upregula-
tion that decreases over time (Fig. 2E); as discussed pre-
viously, this explains the presence of enriched functions 
related to the cell cycle in T1 that decrease in subsequent 
phases. See Fig. S24 for a summary diagram of severity- 
and phase-specific biomarker genes and their associated 
pathological processes in SCI.

Consistency in temporal gene expression patterns 
between the mouse and rat
To validate and compare gene expression patterns 
obtained in our meta-analysis, we selected a mouse 
RNA-seq dataset from Li et al. [28], which possessed an 
experimental design similar to the studies included in our 
work. They induced injuries at the T9 level and collected 
samples from a spinal cord segment on different days 
post-injury (dpi), covering the four phases established in 
our work. We then followed the same pipeline applied to 
individual studies to generate gene expression patterns, 
ensuring their comparability with those generated in our 
meta-analysis. Tables S12–16 reports the DGE analysis 
results of each comparison and the gene expression pat-
terns matrix.

We conducted a correlation analysis to compare gene 
expression patterns between the mouse and rat mod-
els (rat moderate injury vs. mouse; rat severe injury vs. 
mouse; rat moderate injury vs. rat severe injury), dem-
onstrating a generally positive relationship. The density 
plot of correlation values indicates a median close to 
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0.5 in the three comparisons (Fig. 3A and Table S17). A 
total of 892 genes displayed a strong positive relationship 
(r > 0.9) between mouse and moderate rat injury, another 
892 genes demonstrated a positive relationship between 

mouse and severe rat injury, and 922 genes presented a 
positive relationship between moderate rat injury and 
severe rat injury. Among these, 198 genes positively cor-
related across all three comparisons (Fig.  6A). We next 

Fig. 3 Gene expression patterns comparison between rat meta-analysis and mouse dataset, and clustering analysis using biomarker genes in mouse and 
GSE218088 datasets. (A) Density plot of correlation values between gene expression patterns. Black denotes rat moderate injury vs. mouse; red denotes 
rat severe injury vs. mouse; and purple denotes rat moderate injury vs. rat severe injury. The green line represents a correlation coefficient of 0.9. Dashed 
lines represent the median correlation values for each comparison. The Venn diagram depicts the intersection of genes with a correlation coefficient 
greater than 0.9 in each comparison. (B) Comparison of expression patterns of phase-specific genes in mice and moderate/severe injury in rats. (C) Hi-
erarchical clustering using phase-specific genes (Fosl1, Il6, Cfp, Sipa1, Cp, and Dbp) with meta-analysis signatures and the mouse dataset. (D) Hierarchical 
clustering using severity-specific genes with meta-analysis signatures and the GSE218088 transcriptional signature. (E) Hierarchical using phase-specific 
genes with meta-analysis signatures and GSE218088 transcriptional signatures
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performed a clustering analysis using a curated set of 
potential phase-specific genes (Fosl1, Il6, Cfp, Sipa1, Cp, 
and Dbp) that displayed similar gene expression patterns 
across the three comparisons (Fig. 3B). Hierarchical clus-
tering in Fig.  3C revealed a clear separation of groups 
based on time post-injury, similar to that observed in 
Fig. 1G.

In this case, the mouse T3 and T4 signatures become 
grouped within the same branch as M3 and S3 in the rat, 
which could be explained by slight differences in timings. 
Mouse T3 is defined as 28 dpi, and T4 is 42 dpi, whereas 
rat T3 covers 15–35 dpi, and T4 extends from 56 to 168 
dpi. Longer intervals between phases could lead to more 
distinct differences in expression profiles, as the injury 
has additional time to stabilize.

Our comparative analysis with an SCI mouse model 
validated the gene expression patterns established in our 
meta-analysis and demonstrated a positive correlation 
between mouse and rat injury responses, supporting the 
reliability of the identified biomarker genes.

Proposed severity- and phase-specific biomarker genes 
effectively classify novel rat transcriptomic profiles
We used the GSE218088 dataset [29] published after 
the study search and selection period as a validation 
set, given that it meets the inclusion criteria established 
in the meta-analysis. We aimed to evaluate whether 
selected phase- and severity-specific biomarker genes 
could correctly classify a new transcriptomic profile. In 
this study, the authors indicated that the free fall of a 10 g 
hammer with a diameter of 2.5 mm produced the injury, 

which is considered severe [30, 31]. The authors reported 
that they extracted spinal cord tissue three days after SCI, 
corresponding to the acute phase (T1) defined in our 
work.

Using the top 10 severity-specific genes (Table  1), we 
observed the clustering of the transcriptional signature of 
the GSE218088 dataset with the severe injury groups in 
our analysis (Fig. 3D). Additionally, using phase-specific 
biomarkers for T1, T2, and T4 (Table 1), we also observed 
the clustering of the transcriptional profile of GSE218088 
with the T1 signatures from our meta-analysis (Fig. 3E). 
Therefore, this comparison demonstrates the robustness 
of the obtained results and the capacity of the biomarker 
genes to classify a new transcriptional profile.

Concordance between meta-analysis gene expression 
patterns and qPCR analysis
We aimed to validate the expression patterns our meta-
analysis identified through experimental validation. Fol-
lowing severe injury induction, we extracted RNA from 
the injured spinal cord tissue in rats at T1, T2, T3, and T4 
post-injury. We selected eight genes to validate expres-
sion profiles by qPCR - four TFs (Cebpd, Hes1, Jun, and 
Onecut1) given their functional relevance and four tar-
get genes of the TFs (Il6, Vcam1, Vegfa, and Vim) that 
also represent potential phase-specific biomarker genes 
(Fig. 4).

Il6 exhibited general overexpression with notably 
higher expression in T1 than in other phases, where 
gene expression remained similar to pre-injury lev-
els. Vcam1 became downregulated in T1 followed by a 

Fig. 4 Comparison of gene expression patterns for selected transcription factors and their targets for experimental validation. qPCR values obtained by 
calculating the logFC of the expression at each time vs. the expression of the uninjured samples in qPCR. Rat Moderate injury indicates the expression 
pattern obtained in the meta-analysis for moderate injuries. Rat Severe injury indicates the expression pattern obtained in the meta-analysis for severe 
injuries. Mouse indicates the expression pattern obtained in the mice dataset
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gradual upregulation in expression over time, except in 
the mouse dataset, where we only appreciated a gradual 
increase in expression. Oppositely, Vegfa became upregu-
lated in T1 and downregulated in the other phases. Vim 
expression analysis confirmed the constant upregulation, 
although qPCR did not validate a potential role for Vim 
as an S4-specific biomarker.

Cebpd, Hes1, and Jun displayed similar upregulated 
gene expression patterns in the qPCR analysis, meta-
analysis, and mouse dataset, although lower consistency 
existed in the expression patterns across all four sys-
tems. Contrarily, Onecut1 presented a different pattern of 
change, although we confirmed constant downregulation 
of gene expression over time.

In addition, we conducted a correlation analysis to 
compare the logFC values obtained from qPCR with 
those derived from the meta-analysis and mouse dataset 
(Fig. S25). For target genes, 10 of 12 qPCR comparisons 
had strong Pearson correlations above 0.85; in contrast, 
only 5 of 11 comparisons for TFs exceeded 0.7.

Taken together, although reproducing the exact gene 
expression patterns remained challenging, this validation 
step confirmed general dysregulation patterns or at least 
the direction of dysregulation at specific phases after 
injury.

Severity-specific rat biomarker genes predict injury 
prognosis from human SCI patient blood samples
To investigate the potential clinical translation of the 
severity-specific biomarker genes identified in rats to 
the prediction of injury prognosis from blood samples of 
human SCI patients, we analyzed the GSE151371 dataset 
[32] containing gene expression profiles of human blood 
samples collected in the first 10 days after SCI. Human 
SCIs are categorized based on severity and progno-
sis using the American Spinal Cord Injury Association 
(ASIA) with a 5-grade scale - the American Impairment 
Scale (AIS) - ranging from A-E (moving from more to 
less severe). Grade A denotes complete sensory and 
motor loss; Grade B signifies complete motor loss but 
preserved sensation; Grade C and D represent various 
degrees of motor function preservation, while Grade E 
indicates normal sensory and motor function [33].

To achieve a similar scenario to our rat-based meta-
analysis, we selected samples from AIS A and AIS D to 
ensure similarity in severity between the two biological 
systems. After DGE analysis between groups, we identi-
fied 931 genes (FDR < 0.1; Table S18). Next we compared 
this list with the 282 severity-specific genes previously 
identified in rats (Fig.  5A). We found twelve intersect-
ing genes (EXT1, FBN1, FOSB, GNAO1, GRB10, MMP9, 
NFE2, PRF1, SLC25A23, SNAI1, ST6GALNAC3, and 
STX11) (Fig.  5B), whose expression patterns in the 

GSE151371 dataset were characterized by increasing dys-
regulation as SCI severity increases (Fig. S26).

We then used this 12-gene signature to analyze the 
ability to stratify groups according to severity by cluster-
ing analysis in rats and humans. Human blood sample 
analysis revealed the presence of three clusters: severe 
injury, moderate injury, and healthy controls (Fig.  5C), 
while the gene consensus signatures demonstrated strati-
fication based on the severity level in rats (Fig. 5D). These 
findings indicate that expression levels of the 12 poten-
tial biomarker genes can delineate severity-specific sub-
groups in human blood and rat spinal cord samples.

Meta-SCI app - an interactive and user-friendly platform to 
explore results
We developed the Meta-SCI app  (   h t  t p s  : / / m  e t  a s c i - c b l . s h i 
n y a p p s . i o / m e t a S C I /     ) , an interactive web application that 
provides a user-friendly interface to consult and visual-
ize the results obtained in this work, allowing users to 
gain a deeper understanding of the underlying mecha-
nisms of SCI. This application consists of eight main 
modules (Fig. 6), allowing users not only to explore all the 
generated results but also perform further analysis and 
research with the available tools. For further information 
on the modules of the Meta-SCI app, consult the “Help” 
section.

Discussion
SCI represents a complex challenge that demands novel 
approaches to better understand the underlying disease-
associated mechanisms. Here, we present a transcrip-
tomic meta-analysis consolidating the most significant 
number of studies/samples regarding rat SCI datasets to 
our knowledge. Furthermore, we integrate diverse exper-
imental models based on severity and phase post-injury. 
As a pioneering effort, we also establish a freely acces-
sible transcriptomic reference for SCI research.

The strength of our work emerges from the generation 
of transcriptomic consensus signatures within established 
groups. Applying uniform processing and integration 
through meta-analysis enhances statistical robustness 
when determining the magnitude of gene alterations, 
mitigating inherent dataset heterogeneity and biases 
stemming from disparate pipelines – a significant feat, 
given that studies with identical experimental designs 
can yield contradictory expression changes for the same 
gene [34]. Experimental validation represents another 
strength of our research, which we demonstrated via (i) 
qPCR of eight gene signatures, confirming the direction 
of dysregulation in all cases; (ii) bioinformatic analysis, 
finding a positive correlation in temporal transcriptional 
changes between rat and mouse; and (iii) the correct clas-
sification of an external transcriptional signature using 
proposed severity- and phase-specific biomarker genes. 

https://metasci-cbl.shinyapps.io/metaSCI/
https://metasci-cbl.shinyapps.io/metaSCI/
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Our work facilitates the comparison of gene expres-
sion levels, pathways, and TF activity across time/injury 
severities. Furthermore, direct identification of gene 
expression levels associated with specific pathways or 
TF targets is possible. While one of our study’s strengths 

lies in assembling 14 studies and 273 samples, unequal 
representation across experimental groups represents a 
limitation, highlighting an emphasis on acute and a lack 
of samples in chronic phases. As far as our knowledge 
extends, Squier et al. [35] previously integrated the larger 

Fig. 5 Severity-specific biomarker genes stratify samples in human and rat SCI models. (A) Schematic illustration of the approach to identify severity-
specific biomarker genes common to the two biological systems under study. (B) Barplot comparing the logFC of the 12 intersecting genes. Orange bars 
indicate the logFC values after comparing AIS A vs. AIS D in human samples. Green bars indicate logFC after comparing the consensus logFC in severe 
injuries and consensus logFC in moderate injuries obtained in rat meta-analysis. (C) Hierarchical clustering uses the 12-gene signature in human blood 
samples from the GSE151371 dataset. (D) Hierarchical clustering using the 12-gene signature in rat spinal cord gene consensus signatures obtained in 
the meta-analysis
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Fig. 6 Overview of the main Meta-SCI app modules
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number of rat SCI transcriptomic datasets. Nevertheless, 
our research represents a progress, as we incorporated a 
more comprehensive array of diverse datasets (14 vs. 3) 
and employed more sophisticated integration methods 
using meta-analysis instead of an intersection of results. 
This underscores the necessity to publish data following 
FAIR principles (findability, accessibility, interoperabil-
ity, and reusability) [36], as certain studies do not provide 
data or adequate sample descriptions. Another potential 
limitation arises from including datasets derived from 
diverse technologies and platforms (10 microarrays and 
4 RNA-seq experiments). However, the standardized 
reanalysis and subsequent integration after DGE analysis 
effectively captured changes in transcriptional regulation 
[9].

This study generated eight consensus transcriptional 
profiles that comprehensively characterized each pre-
defined group. These transcriptional profiles serve a 
dual purpose: first, they provide insight into phase- and 
severity-specific expression patterns of genes, and sec-
ond, they are used for the identification of potential bio-
markers and functional characterization. Various sources 
reinforce the robustness of these expression profiles. 
Previously, Tica et al. [37] combined four transcriptomic 
and proteomic datasets to identify genes/proteins per-
sistently dysregulated at 7 days and 8 weeks post-injury. 
They found 40 upregulated and 48 downregulated genes/
proteins, consistently matching our meta-analysis results. 
Notably, our research identified one of these genes - Vim 
- as consistently upregulated across all time points after 
SCI, corroborating results from the meta-analysis, the 
mouse dataset, and qPCR validation. We also validated 
the expression profiles of the meta-analysis by comparing 
them with the expression profiles of a mouse dataset [28] 
that shared a very similar experimental design to those 
studies included in our work. We observed an overall 
positive correlation between mouse and rat gene expres-
sion patterns for moderate and severe injury. While the 
exact replication of expression patterns posed challenges, 
qPCR-based validation reaffirmed the direction of dys-
regulation (upregulation/downregulation) at specific 
time points. Overall, these transcriptomic consensus 
signatures provide insight into how gene expression pat-
terns evolve, offering valuable information regarding the 
development of potential therapeutic strategies suitable 
for each SCI phase.

We identified biomarker genes distinguishing moder-
ate and severe injuries, displaying significant and persis-
tent dysregulation in severe injuries. The downregulated 
genes play roles in the functions and development of the 
nervous system and synapses. These findings mirror the 
increased loss of function associated with severe injury 
due to more extensive damaged tissue and complete axo-
nal rupture. The upregulated genes are associated with 

tissue remodeling and extracellular matrix organization. 
Notably, 45 of these genes are translated into proteins 
that locate to the extracellular region. In severe injuries, 
these genes might become activated to regulate mecha-
nisms involved in wound healing and fibrosis [38]. By 
employing the top 10 severity-specific genes, we effec-
tively classified an external dataset involving a severe rat 
injury, demonstrating their validity. The expression pro-
files of the identified severity-specific genes make them 
suitable as prognostic biomarkers. Since no significant 
expression changes occurred in moderate damage, but 
considerable and persistent dysregulation occurred in 
severe injuries, these genes can be employed at the early 
stages of injury to predict progression. Among potential 
severity biomarkers, we identified the Mmp9 and Mmp23 
matrix metalloproteinases (MMPs), which exhibited sig-
nificantly higher upregulation in severe compared to 
moderate injury. Previous studies suggested MMPs as 
potential predictive biomarkers for worse neurological 
outcomes in human patients as well as in rat and canine 
models [38–42]. This consistency across species under-
lines the reliability and potential application in clinical 
research as prognosis biomarkers. In addition, Microtu-
bule-Associated Protein 2 (Map2) has previously been 
proposed as a severity biomarker [40, 43]. Our results 
indicate a greater downregulation of Map2 (and Map7) 
expression in severe injury, which could represent a new 
candidate biomarker gene for future studies.

We also identified biomarker genes that allowed for 
phase-specific stratification of transcriptomic profiles 
regardless of severity. The acute phase (T1) - the most 
characteristic and readily distinguishable phase - pro-
vided the highest number of potential biomarker genes. 
This may be explained by the cascade of events triggered 
by the initial trauma, including the activation of stress 
and inflammatory response mechanisms to contain the 
injury [1, 17]. Additionally, we also observed a great acti-
vation of genes related to the cell cycle, driven by the 
proliferation/activation of mitotic cells (such as microg-
lia and astrocytes), as well as the initiation of apoptotic 
processes in damaged cells [18, 19]. In fact, it has been 
reported that inhibition of cell cycle gene expression 
may improve motor and cognitive recovery [44–47]. 
Subacute phase-specific genes, including complement-
related genes (e.g., Cfp, C1qa, C1qb, and C1qc), exhibited 
a distinct gene expression pattern peaking at T2. This 
pattern aligns with the dynamic behavior of cells such 
as macrophages and microglia that express and secrete 
complement proteins [15, 16]. Monocytes migrate to 
injury sites and differentiate into macrophages at approx-
imately 3 dpi, culminating in a peak response at around 
7 dpi, while resident microglia reach an activation peak 
one-week post-injury [48, 49]. Utilizing a combination of 
phase-specific genes supports the accurate classification 
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of transcriptomic profiles for meta-analysis data and new 
transcriptomic profiles, such as those in the GSE218088 
dataset. Additionally, while certain genes display species-
specificity, common genes (such as Fosl1, Il6, Cfp, Sipa1, 
Cp, and Dbp) can be used for the temporal classifica-
tion of rat and mouse samples. Experimental validation 
of Il6, Vcam1, and Vegfa confirmed the expression pat-
terns observed in the meta-analysis and validated their 
similarity in the mouse dataset. Thus, our study identi-
fied phase-specific biomarkers that may aid in selecting 
therapies based on transcriptomic profiles and improve 
patient stratification.

Our work provides a functional framework for assess-
ing the degree of dysregulation in biological functions of 
interest. Our findings align with previous SCI research, 
characterized by the maintained upregulation of func-
tions related to the immune system and the downregu-
lation of processes associated with the nervous system 
function and development. This phenomenon is influ-
enced by other processes that sustain an unfavorable 
environment for functional recoveries, such as disturbed 
ionic homeostasis, vascular injury, ischemia, free radical 
stress, cell death [13, 17, 50], mitochondrial dysfunction 
[23], metabolic alterations (including the downregulation 
of lipid and cholesterol metabolism) [22], or extracellu-
lar matrix remodeling [51]. Considering this complex 
context, any strategy for developing effective therapies 
should include a combination of multiple targets, consid-
ering the interconnected nature of these systems. At the 
functional level, we observed differences between phases, 
with the decreasing significance of pathways related to 
cell cycle and RNA transcription as time progresses post-
injury particularly noteworthy. However, in contrast to 
gene-level results, we did not identify substantial differ-
ences between severities. Likewise, the constructed co-
expression networks, comprising different genes with 
altered expression based on severity, demonstrated simi-
larities in the enriched functions’ quantity and nature. 
This analysis corroborates the functional interconnection 
of genes with similar expression patterns [52, 53] and 
agrees with the study of De Biase et al. [54], which failed 
to report consistent alterations in functional patterns 
associated with injury severity, even given the apparent 
variations occurring at the gene expression level. This 
phenomenon may be explained by the design of func-
tional enrichment techniques that capture the coordi-
nated action of gene groups. Consequently, even though 
specific genes may display more pronounced dysregula-
tion in severe injuries, their collective direction points 
toward the same outcome.

Our study also provides a way to infer the activity of 
master transcriptional regulators represented by pio-
neering evaluation of TF activity based on the expres-
sion levels of target genes, providing a new perspective 

for more efficient therapeutic interventions. In addition, 
we experimentally validated four TFs. Hes1 - a transcrip-
tional repressor involved in neurogenesis [55] – displayed 
overexpression in our meta-analysis and the experimen-
tal validation and differential activation in all experi-
mental groups. Previous studies support these findings, 
demonstrating Hes1 overexpression after SCI [56] and 
emphasizing the role of Hes1 in promoting neurogen-
esis through inhibition of its target genes, consequently 
enhancing functional recovery [57]. Onecut1 – a tran-
scriptional activator regulating the production, diversifi-
cation, distribution, and maintenance of various neuronal 
populations [58–60] – became downregulated following 
SCI; while we experimentally validated this result, the 
results were not wholly consistent with the expression 
pattern obtained from the meta-analysis, possibly thanks 
to inter-experimental data heterogeneity. Activity infer-
ence analysis indicated Onecut1 deactivation, especially 
in the early phases of injury. These findings suggest that 
Onecut1 overexpression or increased Onecut1 activity 
could benefit neuronal development and function. Our 
bioinformatic and experimental results also indicated 
upregulation of Cebpd - a transcriptional activator that 
regulates genes involved in immune responses [61] - after 
injury, accompanied by differential activation in acute 
phases. Previous studies reported Cebpd overexpression 
following injury [61, 62] and enhanced expression dur-
ing functional recovery in mice deficient in this gene [62]. 
Jun - a transcriptional activator highly induced following 
neuronal damage [63, 64] – became consistently over-
expressed and activated in all experimental groups; in a 
related study, Zhang et al. proposed that miR-152 overex-
pression inhibited inflammatory responses and promoted 
functional recovery by inhibiting Jun [64].

We believe the identification of a 12-gene signature 
predicting injury severity in human blood and rat spi-
nal cord data is of great interest. The major challenge 
involves the inability to obtain expression data from 
human spinal cord samples and the absence of datas-
ets comparing moderate and severe injuries in rat blood 
samples, which prevents direct tissue comparisons. For 
these reasons, identifying common biomarkers between 
tissue and blood across species is valuable. It suggests 
that certain biological processes may be conserved and 
detectable in peripheral blood, even if the injury is local-
ized to the spinal cord. Among these 12 genes, MMP9 
has already been proposed as a predictive biomarker 
across various species [39, 41, 65]. Also, while identify-
ing a biomarker in blood and tissue can be challenging, 
there exist documented cases where this has been suc-
cessful. For example, Qi et al. identified a gene signature, 
including MMP9, that could differentiate glioblastoma 
patients based on transcriptomic profiles derived from 
both blood and tumor tissue [66]. This suggests that 
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other genes proposed in our study may also hold prog-
nostic value in both species. The clinical application of 
this signature could be valuable, enabling patient stratifi-
cation through simple and non-invasive techniques such 
as blood extraction and transcriptional analysis, making 
it easier to implement in clinical settings, such as hos-
pitals. Although the ASIA system, accompanied by the 
anatomical evidence of the extent of the affected and pre-
served tissue by magnetic resonance imaging, represents 
the standard for predicting SCI severity, a need exists to 
find new operative and non-invasive methods for prog-
nosis. The ASIA system relies on neurological status eval-
uations through sensory and motor exams; however, this 
method suffers from limitations [32]. Further investiga-
tion will be required to explore the prognostic capacity of 
these genes in detail with larger sample sizes in humans 
and additional relevant models.

The development of the Meta-SCI app during this study 
offers an additional dimension. This platform extends 
beyond a mere results repository; Meta-SCI serves as 
an analysis tool for the research community. Also, Meta-
SCI includes two injury models, allowing researchers to 
choose which best suits their needs. Consequently, the 
Meta-SCI app emerges as a valuable resource for hypoth-
esis generation and validation and constitutes a tran-
scriptional reference database for studying SCI.

Our study offers a comprehensive systems biology 
frame of SCI, providing a holistic view at the gene and 
functional levels involving the dimensions of sever-
ity and phase. We identified potential biomarker genes 
that effectively stratified transcriptomic profiles based 
on phase and severity, offering critical insights into SCI 
progression. Thanks to our user-friendly Meta-SCI web 
application, researchers can explore this extensive results 
repository, tailoring their investigations to their fields of 
interest. Our study sheds light on the intricate mecha-
nisms underlying SCI and equips researchers with the 
means to translate these insights into diagnostic and 
therapeutic interventions.

Methods
Study search and selection
A systematic review and selection of studies was con-
ducted in September 2022. The search was performed in 
two public databases for transcriptomic data - GEO [10] 
and ArrayExpress [11] - according to PRISMA [12] state-
ment guidelines and carried out using the keywords “spi-
nal cord injury.” The inclusion criteria were: (1) organism, 
Rattus norvegicus; (2) tissue, thoracic spinal cord; and (3) 
RNA sequencing or microarray data from Affymetrix or 
Agilent used as gene expression platforms. The exclusion 
criteria were: (1) studies without control samples (sham 
or naive rats); (2) individual samples from rats that had 

received any type of treatment; and (3) samples rostral or 
caudal to the epicenter of the injury.

Injury severity was classified into moderate and severe 
injury. The severe group included lesions resulting from a 
spinal cord impact of ≥ 200 kdyn, a 10 g weight drop from 
50  mm, or a complete transection of the spinal cord; 
meanwhile, injuries not meeting these criteria were con-
sidered moderate (Table S2). Additionally, four phases of 
injury were defined based on the timeline post-injury and 
when samples were collected: acute (0–3 days, T1), sub-
acute (4–14 days, T2), early chronic (15–35 days, T3), and 
late chronic (over 35 days, T4). Control groups included 
samples from rats, either sham-operated or non-operated 
naïve rats. For a comprehensive view of the experimental 
design, consult Figure S27 for the SCI modeling diagram, 
Table S2 for the specific injury method used, and Table 
S3 for detailed annotations for each sample.

Data preprocessing
For microarray studies, normalized data were down-
loaded with the GEOquery package and probes were 
annotated to their corresponding gene symbol using plat-
form-specific annotation packages. For RNA-seq stud-
ies, raw count matrices were manually downloaded from 
GEO, and identifiers were converted to gene symbols 
using the org.Rn.eg.db package. In all cases, the median 
of the expression values of duplicated identifiers was 
calculated.

Exploratory analysis
An exploratory analysis was performed (including box-
plot, PCA, and clustering analysis) to observe sample 
distribution in the groups of interest and evaluate anom-
alous behavior and possible batch effects. Samples from 
the GSE183591 study were taken in two different series, 
separated into two blocks in the PCA. This batch effect 
was taken into consideration for DGE analysis. The nega-
tive values detected in boxplots for the GSE2599 and 
GSE464 datasets were normalized by adding the mini-
mum of all values followed by a logarithmic transforma-
tion of the data.

Differential gene expression analysis
Each injury group was compared with its corresponding 
control within the study to identify DEGs. DGE analysis 
of microarray platforms used the limma package [67]. To 
ensure comparable results between technologies, RNA-
seq datasets were analyzed using the limma-voom pipe-
line, which involves the removal of genes with low counts 
and a logarithmic transformation of the expression 
matrix. P-values were corrected with the Benjamini–
Hochberg (BH) method [68].
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Gene expression meta-analysis
DGE results were integrated to obtain a transcriptional 
consensus signature for each comparison. A meta-anal-
ysis was performed for each gene in at least two studies 
in each comparison. The random-effects model proposed 
by Der Simonian & Laird [69], implemented in the meta-
for package [70], was used to evaluate the combined 
effect. This method weighs the heterogeneity of each 
study and incorporates their inherent variability into the 
overall estimate of the measure of effect. Consequently, 
studies with greater variability will have lower weight 
in this measure. In this case, logFC values were used to 
measure the effect, while the variance was used to mea-
sure variability. Thus, values for the p-value, logFC, and 
95% confidence interval (CI) were calculated for each 
gene evaluated in the meta-analysis. Since multiple meta-
analyses were performed, p-values were adjusted using 
the BH method. Adjusted p-values lower than 0.1 were 
considered significant. Funnel and forest plots were used 
to assess the variability and measure each study’s contri-
bution to the meta-analysis.

Clustering analysis
All clustering analyses were performed on the gene con-
sensus signature matrix. This matrix was constructed 
with consensus logFC values from the meta-analysis, 
selecting genes evaluated in all groups and significant 
in at least one group. The mixOmics package was used 
for PCAs [71]. For hierarchical clustering analysis, the 
Euclidean distance was first calculated as input for the 
hclust function.

Biomarker gene identification
In this context biomarker genes were defined as those 
displaying more significant deregulation in certain 
groups of interest than others, allowing the stratification 
of different groups based on their expression pattern. A 
limma test was applied to identify possible biomarker 
genes that could classify samples according to severity/
phase. The four severe groups were compared against the 
four moderate groups of samples to elucidate severity-
specific biomarker genes. Phase-specific biomarker genes 
common to both severities and specific to moderate or 
severe injury were also explored. Detailed comparisons 
are listed in Table S4. Subsequently, the top 10 genes with 
the lowest p-values from each comparison were selected 
to assess their classification ability via clustering analysis 
comprising PCA and hierarchical clustering.

Gene set analysis
Functional enrichment analysis was performed for each 
gene consensus signature with the GSA method imple-
mented in the mdgsa R package [72]. A gene ranking and 
functional annotation are required as input for GSA. The 

ranking is made by ordering all genes according to the 
p-value obtained in meta-analysis and the logFC value 
sign. For functional enrichment annotation, three anno-
tation databases have been included: the biological pro-
cesses of Gene Ontology [73], KEGG pathways [74], and 
Reactome pathways [75]. Gene sets with less than 10 or 
more than 500 genes were excluded. P-values were cor-
rected with the BH method.

Transcription factors activities
The identification of differentially active TFs used the 
msviper function of the viper package [76] with each of 
the gene consensus signatures as input. Mouse regulons 
from the DoRothEA package [77] with a confidence level 
of A, B, C, or D were selected, excluding those with less 
than 10 genes (Table S11). The p-values were corrected 
using the BH method.

Construction of gene co-expression networks
First, genes with similar expression patterns were found 
using the clust software [78] with the following argu-
ments: -n 0 -t 100 -cs 4. Gene consensus signature 
matrices from moderate and severe injury were used 
separately as input. A PPI was then constructed for each 
cluster of co-expressed genes obtained from clust soft-
ware. The STRINGdb package with the interactions of 
STRING version 11.5 [79] and medium confidence of 
0.400 were used to build PPI networks. The PPI network 
of each cluster was divided into different subnetworks of 
more closely related genes using the fastgreedy algorithm 
implemented in the get_clusters function.

Each subnetwork was then classified into manually pre-
defined functional categories of interest. The get_enrich-
ment function was first used to obtain overrepresented 
functional terms in each subnetwork. Subsequently, the 
biological processes were selected from the Gene Ontol-
ogy, KEGG, and Reactome pathways, ad hoc classifying 
them into pre-established general categories. Finally, the 
frequency distribution of each category was calculated 
for each subnetwork, assigning the category with the 
highest frequency as that which best defines the network.

Bioinformatic validation datasets
For the mouse transcriptomic dataset, a normalized 
count matrix provided from the supplementary material 
provided by Li et al. [28]  (   h t  t p s  : / / d  o i  . o r g / 1 0 . 6 0 8 4 / m 9 . fi  g s 
h a r e . 1 7 7 0 2 0 4 5     ) was downloaded. Samples representative 
of the four temporal phases established in our study (1, 
7, 28, and 42 dpi) and controls were selected (Table S19). 
For the GSE218088 dataset, the normalized expression 
matrix was downloaded using GEOquery, and the probes 
were annotated to the gene symbol. Those genes that dis-
played significance in at least one comparison and were 
present in all groups of our meta-analysis were selected 

https://doi.org/10.6084/m9.figshare.17702045
https://doi.org/10.6084/m9.figshare.17702045
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for both datasets. A DGE analysis using the limma pack-
age was performed, comparing each injured group 
against uninjured controls.

Experimental validation via qPCR
A severe traumatic SCI model in adult female Sprague 
Dawley rats was employed for RNA isolation and qPCR 
in silico data validation. The animals were housed at the 
Animal Experimentation Unit of the Research Insti-
tute Príncipe Felipe (Valencia, Spain) under standard 
conditions. All experimental procedures adhered to 
the guidelines established by the European Communi-
ties Council Directive (86/609/ECC), the Spanish Royal 
Decree 53/2013, and the Animal Care and Use Commit-
tee of the Research Institute Príncipe Felipe (2021/ VSC/
PEA/0032).

Rats were subcutaneously pre-medicated with mor-
phine (2.5  mg/kg) and anesthetized with 2% isoflurane 
in a continuous oxygen flow of 1  L/min. Laminectomy 
was performed on thoracic vertebrae 8–9 to expose the 
spinal cord, and severe SCI was induced at the thoracic 
vertebrae 8 level by contusion, applying a force of 250 
kdyn using the Infinite Horizon Impactor, as previously 
described [80]. Post-surgery care included manual blad-
der drainage twice a day until vesical reflex recovery and 
subcutaneous administration of 5 mg/kg of Enrofloxacin 
(Alsir) for seven days, as well as 0.1 mg/kg of buprenor-
phine twice a day for four days after each intervention.

At each endpoint: 1 dpi (n = 3), 7 dpi (n = 3), 28 dpi 
(n = 4), and 56 dpi (n = 4) after injury to represent (T1, 
T2, T4, and T8, respectively), animals were overdosed 
of sodium pentobarbital (100  mg/kg) and transcardially 
perfused with a 0.9% saline solution. Spinal cord tissue 
was extracted, and the injury epicenter was immediately 
frozen in liquid nitrogen and stored at – 80 ºC until use. 
RNA extraction was performed using the TriZol stan-
dard method, followed by an additional cleanup step 
using RNeasy MinElute Cleanup (Qiagen, Germany) to 
ensure sample quality (A260/280 ≈ 2 and A260/230 ≥ 1.8). 
Reverse transcription was performed using the high-
capacity RNA-to-cDNA™ kit (Applied Biosystems, Mas-
sachusetts, USA).

Specific primers (Table S20) for each gene of interest 
were designed using primer-BLAST (NCBI, Maryland, 
USA) and validated by efficiency curve performance. 
qPCR was conducted in triplicate using AceQ SYBR 
qPCR Master Mix (ThermoFisher) in the Light-Cycler 
480 detection System (Roche, Basel, Switzerland). Ct 
data were calculated using the LightCycler 480 rela-
tive quantification software (Roche, Basel, Switzerland). 
GAPDH mRNA levels served as an internal control for 
normalization.

Analysis of human blood samples
The GSE151371 normalized gene expression matrix 
was downloaded from GEO, and the expression values 
were log-transformed. The samples corresponding to 
the AIS A, AIS D, and the healthy control groups were 
then selected for further analysis (Table S21). DGE anal-
ysis was then performed to compare AIS A vs. AIS D 
with the limma package following the same pipeline as 
the previous analyses. Finally, significantly altered genes 
(FDR < 0.1) were selected to compare with the list of rat 
biomarker genes. The list of intersecting genes was used 
for the clustering analysis of both biological systems. The 
healthy controls from the GSE151371 dataset were also 
included for visualization and clustering analysis.

Meta-SCI app
Meta-SCI app is powered by the RStudio Shiny package 
and deployed on a shinyapps.io server, available at https:/ 
/metasc i-cbl.s hiny apps.io/metaSCI. Plots are  g e n e r a t e d 
using ggplot, plotly, and heatmaply. All data processing 
and analysis are conducted using R.
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