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Abstract 

Background  Characterizing the variety of cell types in the tumor microenvironment (TME) and their organization 
into cellular communities is vital for elucidating the biological diversity of cancer and informing therapeutic strategies.

Methods  Here, we employed a machine learning-based algorithm framework, EcoTyper, to analyze single-cell 
transcriptomes from 139 patients with head and neck squamous cell carcinoma (HNSC)and gene expression profiles 
from 983 additional HNSC patients, aiming to delineate the fundamental cell states and ecosystems integral to HNSC.

Results  A diverse landscape of 66 cell states and 9 ecosystems within the HNSC microenvironment was identified, 
revealing classical cell types while also expanding upon previous immune classifications. Survival analysis revealed 
that specific cell states and ecotypes (ecosystems) are associated with patient prognosis, underscoring their potential 
as indicators of clinical outcomes. Moreover, distinct cell states and ecotypes exhibited varying responses to immuno-
therapy and chemotherapy, with several showing promise as predictive biomarkers for treatment efficacy.

Conclusion  Our large-scale integrative transcriptome analysis provides high-resolution insights into the cellular 
states and ecosystems of HNSC, facilitating the discovery of novel biomarkers and supporting the development 
of precision therapies.

Introduction
Head and neck squamous cell carcinoma (HNSC) is 
one of the most common malignant tumors world-
wide, with approximately 800,000 new cases reported 
each year. Its prognosis remains poor,with a 5 year sur-
vival rate of less than 50% [1]. Despite recent advances 
in treatment strategies, particularly targeted therapies 
[2] and immune checkpoint therapies [3], significant 
improvements in patient prognosis have remained elu-
sive [4]. The poor prognosis of HNSC patients can pri-
marily be attributed to the marked heterogeneity of the 
disease, which often results in suboptimal treatment 
[4–6]. Therefore, early characterization of the tumor’s 
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heterogeneity is essential for guiding precise treatment 
strategies and improving patient prognosis.

The American Joint Committee on Cancer (AJCC) 
classification is a key clinical tool for assessing risk and 
guiding treatment decisions for HNSC patients [7]. 
However, the current AJCC classification has notable 
limitations, as it considers only clinical stage and over-
looks the tumor heterogeneity among patients at the 
same stage. Consequently, this can lead to inadequate 
clinical decision-making, potentially resulting in either 
overtreatment or undertreatment. Therefore, a more 
comprehensive understanding of the tumor’s immune 
microenvironment and its heterogeneity is crucial for 
informing targeted therapies and improving clinical 
outcomes in HNSC patients [4].

The rapid advancement of single-cell sequencing 
technology has revolutionized our ability to profile indi-
vidual cells with unprecedented resolution, providing 
deeper insights into the tumor microenvironment [8–
10]. Ruben Bill et  al. demonstrated that SPP1/CXCL9 
serves as a macrophage marker and capable of predict-
ing HNSC prognosis based on single-cell sequencing 
data from 52 samples [11]. Similarly, Z. L. Liu et  al. 
reported that interactions between SPP1 + macrophage 
and POSTN + fibroblast promote tumor progres-
sion and are associated with poor prognosis in HNSC 
patients12. Previous studies have primarily focused on 
the relationship between specific cell types and patient 
outcomes, which lack a comprehensive understanding 
of the diverse cellular states within the tumor micro-
environment of HNSC and their combined impact on 
patient prognosis. This gap underscores the need for 
an integrated perspective that accounts for the com-
plex interplay of cellular components within the tumor 
context.

In this study, we employed the EcoTyper machine 
learning framework [13] to identify the fundamen-
tal cell states and communities within HNSC, reveal-
ing 66 cell states and 9 ecosystems that expand upon 
previous immune classifications. We validated these 
findings using multicolor immunofluorescence, spa-
tial transcriptomics, single-cell, and bulk RNA tran-
scriptomics, and extended our analysis to a broader 
pan-cancer context. Survival analysis highlighted the 
prognostic significance of distinct cell states and eco-
systems, demonstrating significant correlations with 
patient outcomes. Moreover, we investigated the poten-
tial application of these cell states and ecosystems in 
treatment selection, finding that different cell states 
and ecosystems exhibited distinct responses to immu-
notherapy and chemotherapy, with multiple cell states 
and multicellular communities showing potential as 
predictors for treatment response.

Results
Identification and validation of HNSC cell states
EcoTyper employs a machine learning framework 
to extract cell type-specific gene expression profiles 
from the transcriptome, identify transcriptional cell 
states within each cell type, and define a tumor eco-
system (“ecotype”) composed of coexisting cell states 
[13] (Fig.  1). To identify and validate HNSC specific 
cell states, as well as multicellular communities, and to 
explore their clinical significance, we gathered data from 
multiple sources, including 131 single-cell sequencing 
samples of HNSC from 7 GEO cohorts (104 primary 
samples in discovery cohort and 27 metastatic samples in 
validation cohort), 7 BLCA single-cell sequencing sam-
ples from GSE135337, 11 melanoma (SKCM) single-cell 
samples from GSE215121, and 8 HNSC spatial transcrip-
tomic samples from GSE181300. In addition, we obtained 
microarray data from 441 HNSC patients across three 
GEO cohorts, RNA-seq data from 519 HNSC patients in 
the TCGA-HNSC cohort, 472 patients across three pub-
licly available immunotherapy cohorts, as well as RNA-
seq data from 23 patients in our Xiangya hypopharyngeal 
carcinoma chemotherapy cohort. (Fig. 1, Figure S1, Sup-
plementary Table 1).

We initially performed quality control and clus-
tering annotation on 104 primary HNSC single-cell 
samples, identifying 256,898 high-quality cells classi-
fied into 13 distinct cell types (Fig. 2A). Each cell type 
was annotated based on classic HNSC marker genes 
[11, 14–17] (Fig. 2B, Figure S2A). We then applied the 
EcoTyper framework with non-negative matrix factori-
zation (NMF) to identify between 3 and 9 cell states 
for each cell type, ultimately identifying 66 differ-
ent cell states (Fig. 2C, Supplementary Table 2). These 
include: (1) B Cell: Six states, including germinal center 
B cell expressing LRMP and AICDA, and naïve B cells 
expressing IGHD and FCER2 [18]. (2) Plasma Cell: 
Nine states, including ATP5MC1 + plasma cell and 
ATPIF1 + plasma cell. (3) CD4 + T cell: Three states, 
including naïve CD4 T cell states expressing CCR7. (4) 
CD8 + T cell: Three states, including GZMA + effec-
tor CD8 T cell and FOXP3 + regulatory CD8 T cell. 
(5) NK Cell: Five states, including NKT cells with 
high expression of IFNG. (6) Monocyte: Three 
states, including intermediate monocytes express-
ing both CD14 and FCGR3A (7) Macrophage: Seven 
states, including SPP1 + macrophage, CXCL9 + mac-
rophage, APOE + macrophage, TGFBI + CXCL8 + mac-
rophage [19], and proliferative macrophage. (8) cDC: 
Three major cDC states, including cDC1 express-
ing CLEC9A and cDC2 expressing CLEC10A. (9) 
pDC: Six major pDC states. (10) Mast Cells: Five 
major states. (11) Fibroblast: Four states, including 
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TGFBI + WNT5A + fibroblast, ACTA2 + fibroblast, and 
CFD + inflammatory fibroblast. (12) Endothelial Cell: 
Six distinct states, including lymphatic endothelial 
cell (characterized by CCL21 and PROX1 expression), 
arterial endothelial cell (characterized by HEY1 and 
IGFBP3 expression), and venous endothelial cell (char-
acterized by ACKR1 expression). (13) Epithelial Cell: 
Six states, including a highly malignant epithelial sub-
type characterized by high expression of WNT5A.

To validate the cell states identified from primary 
HNSC single-cell samples, we used the same clustering 
and annotation strategy to classify 27 metastatic HNSC 
samples into the same 13 cell types (Figure S2B, C). Using 
the EcoTyper framework, we successfully restored nearly 
all cell states identified in the primary samples (Fig. 2D, 
Supplementary Table 3), demonstrating their robustness.

To further validate the accuracy and reliability of the 
classifications, we performed additional analyses with 
the ROGUE and scSHC R packages. The ROGUE index 
was calculated for each sample and aggregated by cell 
type, confirming high purity of the identified cell states 
(Figure S2D). Furthermore, the scSHC testClusters func-
tion showed high consistency with the original EcoTyper-
based classification, further validating the clustering 
results (Supplementary Table  4). These complementary 

analyses reinforce the reliability and robustness of the 
identified cell states.

Deciphering the prognostic landscape of HNSC cell states
Cell states have been shown to have the ability to predict 
patient survival [13, 20, 21]. However, their prognostic 
significance in HNSC remains unclear. To address this 
gap, we leveraged the unique capabilities of EcoTyper to 
map the prognostic profiles of 66 cell states in HNSC. 
Analysis of overall survival dichotomized these cell states 
into favorable and unfavorable categories, identifying six 
cell states linked to poor survival and seven significantly 
associated with favorable outcomes (Fig.  3A). Nota-
bly, the association between cell state abundance and 
patient outcomes was consistent in the validation cohort 
(Fig. 3B). Among the 13 cell states significantly associated 
with patient outcomes in the training cohort, six main-
tained their significance in the validation cohort. Addi-
tionally, the direction of association was preserved for 
most cell states, demonstrating strong correlations across 
cohorts despite differing platforms used for bulk gene 
expression analysis (Figure S3A).

In line with previous findings [11, 22], a higher abun-
dance of SPP1 + M2-like immunosuppressive mac-
rophage (S06) was associated with poorer outcomes 

Fig. 1  Machine learning framework for large-scale identification and validation of HNSC cell states and ecosystems This schematic diagram 
illustrates the application of EcoTyper in HNSC patients. Initially, cell states were identified in a discovery cohort composed of single-cell sequencing 
data from multiple cohorts of primary HNSC patients. These cell states were subsequently validated using metastatic single-cell sequencing 
samples, and associations between cell state abundance and patient outcomes were analyzed. HNSC ecotypes were identified by examining 
co-occurrence patterns among cell states, and spatial transcriptomics was employed to validate the spatial distribution of both ecotypes 
and cell states. Finally, the association between tumor ecotypes and patient outcomes was examined, along with the analysis of the relationship 
between cell states, ecotypes, and treatment sensitivity across several immunotherapy and chemotherapy cohorts
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in both the training and validation cohorts (Fig.  3C). 
We also identified several additional prognostic asso-
ciations. For instance, ATPIF1 + ATP5G1 + mitochon-
drial metabolism-related plasma cell (S08) were linked 

to improved outcomes in HNSC patients across both 
cohorts (Fig.  3C). Furthermore, we compared the prog-
nostic significance of clinical stage with that of individual 
cell states in HNSC patients. Clinical stage exhibited a 

Fig. 2  Discovery and validation of HNSC cell states A UMAP plot of the discovery cohort composed of primary HNSC samples. B Expression 
of marker genes for 13 cell subpopulations in the discovery cohort. C Heatmap showing distinct cell states across 13 cell types. D Recovery of cell 
states in metastatic single-cell HNSC samples, with a z-score > 1.65 considered significant
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more stable prognostic discriminatory effect compared 
to individual cell states; however, certain cell states, such 
as ACTA2 + fibroblast (S02), demonstrated robust prog-
nostic efficacy across all cohorts (Figure S3B). To further 
validate these findings and provide a comprehensive visu-
alization of ACTA2 + fibroblast, we analyzed our Xiangya 
HNSC TMA cohort to identify ACTA2 + fibroblast using 
two markers, ACTA2 and COL1A1 (Fig.  3D, Figure 
S3C, D). In Fig. 3E, we further explored the relationship 
between ACTA2 + fibroblast abundance and prognosis 
in both the publicly available datasets and the Xiangya 
HNSC TMA cohort. Consistently, a higher abundance of 
ACTA2 + fibroblast was correlated with poorer prognosis 
across all cohorts analyzed. Additionally, we explored the 
relationship between cell states associated with better or 
worse prognosis and HPV infection using data from the 
TCGA database. We found that cell states linked to a rel-
atively favorable prognosis were more abundant in HPV-
positive patients, whereas those associated with a poorer 
prognosis were more prevalent in HPV-negative patients 
(Figure S3E, F).

Reconstructing HNSC cellular communities
Next, we employed the EcoTyper framework to analyze 
patterns of cell state co-occurrence and reconstruct the 
core cellular communities within HNSC. This analysis 
revealed nine distinct ‘‘HNSC ecotypes’’, each compris-
ing 3 to 12 co-occurring cell states (Fig.  4A, B). Nota-
bly, almost every HNSC patient exhibited a dominant 
ecotype, with many tumors comprising multiple ecotypes 
(Fig. 4A). We also identified these ecotypes in metastatic 
HNSC single-cell samples, as well as in TCGA and GEO 
transcriptomic datasets, observing consistent restora-
tion of the majority of ecotypes across different sample 
types (Fig. 4C). Besides, E5 and E9 were scarcely detected 
in metastatic HNSC single-cell samples, likely due to the 
limited sample size of only 27 metastatic HNSC single-
cell samples (Fig. 4D).

To further investigate the colocalization and interac-
tions between cell states within each ecotype and to 
validate the nine ecotypes identified by EcoTyper, we 
analyzed eight HNSC spatial transcriptomic samples. 
We performed reference-guided recovery to estimate 

the abundance of each cell state and ecotype within spa-
tial barcodes. Cell states belonging to the same ecotype 
exhibited stronger spatial correlations than those from 
different ecotypes (Fig.  4E) and were frequently located 
within the same tumor region (Fig.  4F, Figure S4A, 
B). Interestingly, different ecotypes varied in abun-
dance across distinct tumor regions (Figure S4C). In the 
nine tumors analyzed by spatial transcriptomics, most 
ecotypes displayed significant spatial clustering (Fig. 4G), 
suggesting that these ecotypes represent distinct func-
tional units comprising various cell states in HNSC.
Moreover, we investigated the intercellular signaling 
networks within the HNSC ecotypes using CellChat cell 
interaction analysis (Figure S4D, Supplementary Table 5). 
In the E7 ecotype, which is associated with a favorable 
prognosis, NKT cells (NK_cell_S02) exhibited strong 
interactions with cDCs and pDCs through CD8 recep-
tor signaling. Pathways such as CXCL9-CXCR3 and 
MIF-CD74_CXCR4 suggest that these interactions acti-
vate immune responses, thereby promoting antitumor 
immunity. In contrast, the E8 ecotype, associated with 
a poor prognosis, demonstrated a network dominated 
by TGFβ signaling. In this ecotype, fibroblasts (Fibro-
blast_S01) interacted with endothelial and epithelial cells 
via TGFB1-TGFBR1/2 signaling, fostering a pro-tumori-
genic and immunosuppressive microenvironment. These 
results highlight key cellular interactions that may play a 
pivotal role in shaping the HNSC microenvironment.

Characteristics of the multicellular ecosystem in HNSC
After identifying the nine major multicellular eco-
systems in cancer, we explored their clinical charac-
teristics (Fig.  5A). In the TCGA-HNSC cohort, two 
ecotypes were significantly associated with prognosis. 
E7, primarily composed of anti-tumor immune cells 
such as cDC1 and NKT cells, is characterized by the 
activation of immune-related pathways, including T 
cell receptor signaling, NK-mediated immunity, and 
leukocyte activation. This ecotype was strongly asso-
ciated with favorable prognosis in HNSC patients. In 
contrast, E8, which is enriched in cell adhesion and 
growth-related pathways, was closely associated with 
a higher risk of death and marked by elevated levels 

Fig. 3  Association of cell state abundance with patient outcomes across different groups A Survival associations of 66 cell states in the TCGA-HNSC 
cohort, with the most significant marker genes for both unfavorable and favorable cell states indicated. If a cell state is associated with shorter 
survival, the survival association is represented as the -log10(p-value) multiplied by 1. For cell states associated with favorable outcomes, it 
is shown as −1. B Scatter plot illustrating the correlation between cell state survival associations in the TCGA-HNSC cohort and the GEO integrated 
cohorts (GSE41613, GSE42743, GSE65858). Spearman correlation coefficients and two-sided P-values are indicated. The graph also displays 
the linear regression best-fit line and the 95% confidence interval. C Kaplan-Meier survival curves for macrophages (S06) and plasma cells (S08) 
in the TCGA-HNSC cohort. D Representative multicolor immunofluorescence image of ACTA2 + fibroblast. E Prognostic curves for ACTA2 + fibroblast 
across different cohorts

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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of TGFBI + fibroblasts and TGFBI + macrophages. To 
explore the genomic basis of prognostic differences 
between the E7 and E8 ecotypes, we analyzed the 
types of genomic alterations in the TCGA-HNSC 
cohort. The E8 ecotype exhibited more frequent altera-
tions, particularly in genes related to cell adhesion and 

growth, which could contribute to the poorer prognosis 
observed in E8 (Fig. 5B, C).

Using the TCGA-HNSC cohort, we further compared 
the prognostic discrimination efficiency of ecotypes and 
clinical staging. E7 and E8 demonstrated prognostic dis-
crimination nearly equivalent to that of clinical staging 

Fig. 4  Discovery of multicellular communities in HNSC A Heatmap of tumor ecotypes based on different combinations of cell states. B Network 
diagram illustrating ecotype composition, with the width of each edge representing the Jaccard index from the discovery cohort. C Heatmap 
of tumor ecotypes across various validation cohorts. D Proportion diagram showing the distribution of tumor ecotypes in different cohorts. E Violin 
plots comparing Spearman spatial correlation between cell states of different ecotypes and within the same ecotype. F Spatial distribution of each 
cell state within the E8 ecotype, analyzed using spatial transcriptomics. G Spatial clustering of HNSC ecotypes measured using Moran’s I in 8 spatial 
transcriptomic samples of HNSC. A z-score > 1.96 was considered significantly higher than the degree of clustering expected by chance
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(Figure S5A). Moreover, the combination of N-stage and 
ecotype abundance achieved the most effective prognos-
tic stratification, suggesting that tumor ecotypes provide 
a unique perspective in predicting clinical outcomes (Fig-
ure S5A). Additionally, compared to individual cell states, 
tumor ecotypes exhibited stronger consistency in prog-
nostic stratification across the TCGA and GEO cohorts 
(Figure S5B).Besides, we observed that the abundance of 
E7 and E8 ecotypes did not show strong correlations with 
traditional clinicopathological parameters such as TNM 
staging or clinical stage. However, interestingly, ecotype 
abundance did show some correlation with pathologi-
cal grading, though this was primarily observed in the 
G4 group, which had a relatively small sample size (Fig-
ure S5C-D). Despite this, these findings underline that 
ecotype classification is an independent prognostic fac-
tor, providing valuable information that goes beyond tra-
ditional clinical metrics. This highlights the potential of 
tumor ecotypes as complementary tools in clinical prog-
nostication and their ability to offer additional insights 
into tumor progression and patient outcomes.

From the Sankey diagram in Fig. 5D, we observed that 
the tumor ecotypes defined in this study differ substan-
tially in composition from previous pan-cancer ecotype 
classifications [13], though some similarities are evident. 
In this study, E7 is associated with a favorable progno-
sis, with most E7 samples of HNSC aligning with CE9 
and CE10 in pan-cancer ecotype, which were also linked 
to the best prognoses in previous pan-cancer classifica-
tions. In contrast, E8 is associated with a poor prognosis, 
and roughly half of the E8 samples from HNSC cor-
respond to CE1, which had the worst prognosis in the 
prior classification. Besides, we found that the E7 and E8 
ecotypes offer superior prognostic prediction capabili-
ties compared to the previous pan-cancer ecotype clas-
sification. As shown in Fig.  5E, E7 and E8 outperform 
CE1 and CE10 in predicting patient outcomes across 
multiple cohorts, demonstrating the enhanced accuracy 
of this classification in guiding prognostic decisions for 
HNSC. These findings suggest that our tumor ecotype 
classification, derived from single-cell HNSC samples, 
sheds new light on the tumor microenvironment in 
HNSC.. Furthermore, E8 patients are predominantly 

HPV-negative, which may indicate reduced sensitivity to 
immunotherapy.

Prediction of immunotherapy response using HNSC cell 
states and ecotypes
Next, we investigated whether ecotypes could predict 
immunotherapy response. We first analyzed BLCA and 
melanoma single-cell cohorts within the ecotype frame-
work. Our analysis revealed that the common cell types 
in both single-cell sequencing cohorts were largely 
restored (Figure S5E-F, Supplementary Table 3), suggest-
ing that the cell state and ecotype analysis derived from 
HNSC samples can be effectively applied to other cancer 
types. Building on this, we collected tumor expression 
data from 472 patients with advanced cancers who had 
received immune checkpoint blockade therapies, anti-
PDL1 (urothelial carcinoma), anti-PD1 (melanoma), or 
anti-CTLA4 (melanoma) for an integrated analysis. To 
quantify the performance, we assessed the continuous 
association of ecotypes with overall survival in patients 
receiving immunotherapy, as well as their binary associa-
tion with immunotherapy response. E7, which is enriched 
in NKT cell and cDC1, demonstrated the best response 
to immunotherapy compared to other ecotypes, while 
E8 showed relative insensitivity to treatment (Fig.  5F). 
We also compared the performance of ecotypes with 77 
candidate biomarkers, including 66 cell states identified 
by EcoTyper, 3 published immune checkpoint inhibitor 
(ICI) response signatures [23–25], and commonly used 
ICI response marker genes such as CD274, PDCD1, and 
CTLA4 [26]. Notably, the abundance of E7 outperformed 
nearly all other indicators, including those specifically 
designed to predict ICI response (Fig. 5F; Supplementary 
Table 6), highlighting its strong association with favora-
ble immunotherapy outcomes. Conversely, patients with 
high levels of SPP1 + macrophage (S06) and E8 showed 
poor responses to immunotherapy.

Besides, we analyzed pathological sections from 
two immunotherapy-resistant HNSC patients, fur-
ther supporting the presence of the E8 ecotype. 
As shown in Fig.  5G, both patients exhibited high-
power fields with the co-existence of TGFBI + mac-
rophages and TGFBI + fibroblast in the multicolor 

Fig. 5  HNSC ecotype characteristics and their association with immunotherapy response A Ecotype characteristics in the discovery cohort. Top: 
Ecotype-specific survival associations TCGA-HNSC cohort with favorable (blue) or unfavorable (red) survival outcomes indicated. Middle: Average 
abundance of each cell type within each ecotype. Bottom: Gene functional enrichment analysis for the 9 identified ecotypes. B–C Plot of genomic 
alterations from TCGA in E7 and E8 ecotype. D Sankey plots depicting the associations between ecotypes identified in this study and pan-cancer 
ecotypes, as well as HPV status. E A comparison of the prognosis discrimination ability between the ecotypes identified in this study 
and pan-cancer ecotypes. F Associations of 86 signatures with overall survival and response to immune checkpoint inhibitors (ICIs) in 472 patients 
with advanced melanoma or BLCA. G Representative images showing the coexistence of TGFBI + macrophages and TGFBI + fibroblasts within the E8 
ecotype in the multi-color immunohistochemical slices of two immunotherapy-resistant patients, observed at 40 × magnification

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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immunohistochemistry sections of their HNSC tissues. 
These findings demonstrate that multicellular ecosystems 
can capture signals related to immunotherapy response 
within the tumor immune microenvironment of HNSC, 
which are highly predictive of immunotherapy outcomes.

Prediction of chemotherapy response using HNSC cell 
states and ecotypes
TPF treatment regimens play a crucial role in managing 
HNSC and are often combined with immunotherapy to 
enhance tumor control. The tumor microenvironment 
significantly influences the response of solid tumors to 
systemic therapies, such as immunotherapy and chem-
otherapy. To further explore its impact on prognosis 
and chemotherapy sensitivity, we conducted an inte-
grated analysis on 78 patients from the TCGA-HNSC 
cohort who received TPF monotherapy or combina-
tion therapy, along with 23 HNSC patients treated with 
TPF chemotherapy at Xiangya Hospital. Our findings 
revealed that patients with a high abundance of the E1 
ecotype responded best to chemotherapy (Fig.  6A). In 
both the Xiangya and TCGA cohorts, the abundance of 
E1 was significantly elevated in chemotherapy-sensitive 
patients (Fig. 6B). Compared to the previous pan-cancer 
ecotype classification, the predictive efficacy of E1 for 
chemotherapy sensitivity was notably stronger, suggest-
ing the superior ability of this classification in guiding 
treatment decisions. Conversely, patients with a high 
abundance of ACTA2 + fibroblast (S02) exhibited the 
worst prognosis in response to chemotherapy (Fig.  6A).
In these same cohorts, ACTA2 + fibroblast (S02) abun-
dance was markedly reduced in chemotherapy-sensitive 
patients (Fig.  6C). Moreover, ROC curve analysis indi-
cated that both E1 and fibroblast (S02) exhibited strong 
predictive efficacy for chemotherapy sensitivity (Figure 
S6A, B). Survival analysis further indicated that patients 
with high levels of fibroblast (S02) had significantly worse 
prognoses in both cohorts (Figure S6C, D). Addition-
ally, we further validated the impact of ACTA2 + fibro-
blast (S02) abundance on chemotherapy sensitivity in the 
TMA chemotherapy cohort, confirming that high levels 
of ACTA2 + fibroblasts consistently indicated chemo-
therapy resistance across all cohorts (Fig. 6D, E and Sup-
plementary Table 7). These results show that HNSC cell 
states and ecotypes may be helpful for predicting the 
chemotherapy response.

Methods
Human subjects
This study collected tissue samples from 122 patients 
with HNSC at Xiangya Hospital, Central South Univer-
sity. Among them, 23 fresh tissue samples were obtained 
from the patients who underwent TPF chemotherapy 

prior to chemotherapy. Fresh tissue specimens were col-
lected at the time of biopsy, and total RNA was immedi-
ately extracted for RNA-seq. Paraffin-embedded samples 
were collected during biopsy or surgical procedures 
and immediately preserved in formalin. Among these 
patients, 26 received induction or concurrent TPF chem-
otherapy, 2 advanced HNSC patients received immuno-
therapy (anti-PD-1). Clinical specimens were collected 
from January 2020 to December 2023, alongside record-
ing patients’ clinical information and prognoses. Follow-
ups were conducted every 3 to 6 months until death or 
loss to follow-up. The study was conducted in accordance 
with the Declaration of Helsinki. The study protocol was 
approved by the Ethics Review Committee of Xiangya 
Hospital, Central South University. Written informed 
consent was obtained from all participants, and all sam-
ples and data collected in this study were handled in 
compliance with ethical guidelines.

TMA construction
Two pathologists visually inspected HE-stained sec-
tions to evaluate and select representative formalin-fixed 
paraffin-embedded (FFPE) tissue blocks from 97 HNSC 
patients, including 31 pairs of tumor and adjacent normal 
tissue blocks. Based on HE-guided positioning, 1.5  mm 
cores were extracted from the tumor areas using a tissue 
microarray sampling tool. The cores were then inserted 
into recipient paraffin blocks according to a predeter-
mined array layout. A tissue microarray fusion instru-
ment was used to repeatedly fuse the donor tissue cores 
and recipient wax block to ensure complete integra-
tion, forming the tissue microarray module. Finally, the 
microarray was sectioned into 3 μm slices for multi-color 
immunofluorescence staining.

Multicolor immunofluorescence staining
Paraffin sections were baked at 60 °C for 1–2 h to ensure 
complete fixation. The sections were then dewaxed and 
hydrated by sequential immersion in xylene I and II, fol-
lowed by treatment with graded ethanol to preserve 
sample integrity. After several washes in sterile water, 
antigen retrieval was performed using EDTA antigen 
retrieval buffer (pH 8.0; Powerful Biology, B0035). Sec-
tions were heated in a microwave at high temperature 
for 3.5 min, then at low temperature for 15 min to ensure 
optimal antigen exposure. Next, sections were incubated 
with 3% H2O2 at room temperature for 25  min to inac-
tivate endogenous peroxidase, followed by incubation 
with 3% BSA for 10  min to block nonspecific binding 
sites. Primary antibody incubation was carried out, fol-
lowed by HRP-conjugated secondary antibodies and TSA 
(tyramide signal amplification) conjugated fluorescent 
dye, repeating the staining cycle three times to label all 
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targets. After each cycle, antigen retrieval was repeated 
using EDTA buffer and microwave heating (3.5  min at 
high temperature, 15  min at low temperature). The pri-
mary antibodies used to verify ACTA2 + fibroblast locali-
zation were as follows: anti-human ACTA2 (Abcam, 
ab124964; 1:1000), and anti-human COL1A1 (Abcam, 
ab138492; 1:1500). Multispectral imaging of the stained 
TMAs was conducted using the Vectra 3.0 system 

(Akoya), and images were analyzed with inForm soft-
ware (Akoya). In this study, a total of 94 tissue samples 
with high staining quality and suitable for analysis were 
obtained (Figure S3D, Supplementary Table 7).

Public dataset cohorts
We collected gene expression data from a total of 960 
patients with HNSC from the TCGA and GEO databases. 

Fig. 6  Association between HNSC cell states, ecotypes, and chemotherapy response A Associations between the 66 cell states, the ecotypes 
identified in this study, pan-cancer ecotypes, and chemotherapy response were examined. B Correlation between E1 ecotype abundance 
and chemotherapy sensitivity in the Xiangya and TCGA chemotherapy cohorts. C Correlation between fibroblast (S02) abundance 
and chemotherapy sensitivity in the Xiangya and TCGA chemotherapy cohorts. D Representative multicolor immunofluorescence images 
showcasing varying abundances of ACTA2 + fibroblasts in the TMA chemotherapy cohorts. E Correlation between ACTA2 + fibroblast abundance 
and chemotherapy sensitivity in TMA chemotherapy cohorts
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The three GEO datasets (GSE42743, GSE41613, and 
GSE65858) were preprocessed using the robust multi-
array average (RMA) algorithm implemented in the 
‘‘affy’’ package in R to ensure consistent normaliza-
tion across microarray data. To mitigate potential batch 
effects that could arise from combining different data-
sets, we applied the ‘‘sva’’ package in R, specifically using 
the Combat function to harmonize expression values. 
Probes mapping to multiple genes were removed to pre-
vent ambiguous gene assignments, and for genes repre-
sented by multiple probes, the median expression value 
was selected to maintain a singular representative meas-
ure per gene.

Additionally, we obtained three independent immuno-
therapy cohorts from the Tumor Immunotherapy Gene 
Expression Resource (http://​tiger.​cance​romics.​org/) data-
base. To ensure consistency in our analyses, only patient 
samples collected prior to immunotherapy treatment 
were included, eliminating the potential confounding 
effects of therapy-induced gene expression changes.

For single-cell RNA sequencing (scRNA-seq) data, 
we compiled samples from seven GEO datasets, while 
excluding nasopharyngeal carcinoma and lymph node-
derived samples to maintain specificity to HNSC. In total, 
131 samples were retained for further analysis. To mini-
mize technical artifacts, we implemented several rigorous 
quality control steps. The python package ‘‘scrublet’’ was 
used to detect and remove doublets, thereby reducing 
artificial cell multiplets that could confound downstream 
clustering and annotation. Data preprocessing was car-
ried out using Seurat (v5.0), including variable gene 
selection, integration of multiple samples, dimensionality 
reduction, clustering, and differential expression analy-
sis. To ensure the reliability of our dataset, we applied 
strict filtering criteria: (i) Cells with mitochondrial RNA 
content exceeding 10% were removed to eliminate dying 
or stressed cells. (ii) Cells with fewer than 1000 or more 
than 5000 detected genes were excluded to avoid low-
quality or doublet cells. (iii) Cells with over 75,000 unique 
molecular identifiers (UMIs) were removed to prevent 
potential artifacts from over-amplification.

For the remaining cells, we used the ’NormalizeData’ 
function in Seurat to standardize expression values 
and ‘ScaleData’ to mean-center and scale gene expres-
sion, ensuring comparability across samples. To cor-
rect for batch effects, the HarmonyIntegration method 
was employed, further improving the consistency of the 
integrated dataset. Clustering was performed using the 
FindClusters function with a resolution parameter set 
to 1.2. Cell annotation was initially conducted using the 
SingleR algorithm, providing a preliminary classifica-
tion based on reference transcriptomic profiles, and was 

subsequently refined manually using classic cell marker 
genes to enhance accuracy.

Furthermore, we incorporated spatial transcriptom-
ics data from a single-cell spatial cohort (GSE181300) 
obtained from the GEO database. To deconvolute spa-
tial transcriptomic data and infer the cell-type propor-
tions for each spatial spot, we leveraged SPOTlight, a 
machine-learning-based deconvolution method. The ref-
erence profiles for deconvolution were derived from the 
expression patterns of 13 distinct cell types identified in 
our single-cell discovery cohort, ensuring a biologically 
meaningful representation of cellular distribution in spa-
tial transcriptomic samples.

Identification and recovery of cell states and ecotypes 
using ecotyper
EcoTyper is a machine learning framework designed for 
the large-scale identification of cell states and multicellu-
lar communities, referred to as ecotypes. The EcoTyper 
pipeline consists of four key steps: (1) in silico purifica-
tion, (2) cell state discovery, (3) ecotype discovery, and (4) 
recovery of cell states and ecotypes.

In the in silico purification step, raw gene expression 
data underwent rigorous preprocessing, including qual-
ity control filtering, normalization, and batch effect cor-
rection where applicable. Low-quality cells with excessive 
mitochondrial gene expression or low feature counts 
were excluded. Expression profiles were scaled to counts 
per million (CPM) and major cell types were identified 
based on Seurat clustering and annotation, encompass-
ing B cells, plasma cells, CD4⁺ T cells, CD8⁺ T cells, NK 
cells, monocytes, macrophages, conventional dendritic 
cells (cDCs), plasmacytoid dendritic cells (pDCs), mast 
cells, endothelial cells, epithelial cells, and fibroblasts. To 
minimize potential biases introduced by cell annotation, 
we validated major cell type identities using canonical 
marker genes.

For each cell type, EcoTyper was executed 50 times 
using a variant of non-negative matrix factorization 
(NMF) to robustly define cell states. To ensure repro-
ducibility, we set the number of clusters to range from 2 
to 10 and evaluated the clustering robustness using co-
phenotype coefficients. The optimal cluster number was 
determined based on the closest approximation to a co-
phenotype coefficient of 0.98. To further refine cell state 
identification, we implemented strict filtering criteria: 
cell states with fewer than 10 marker genes or those clas-
sified as potential false positives based on the Adjusted 
False Positive Index (AFI) were excluded from down-
stream analyses.

In the Ecotype Discovery step, we quantified the degree 
of overlap between cell states using the Jaccard index, 
assessing statistical significance with a hypergeometric 

http://tiger.canceromics.org/
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test (p < 0.01). The Jaccard matrix was hierarchically clus-
tered using average linkage and Euclidean distance, with 
the optimal number of ecotypes (k) selected based on 
silhouette width. To improve the robustness of ecotype 
classification in head and neck tumors, we imposed a 
minimum requirement of three distinct cell state compo-
nents per ecotype.

In the Cell State and Ecotype Recovery step, EcoTyper 
applied the NMF model in a reference-based manner to 
restore predefined cell states from external datasets. We 
first ensured that the validation dataset was processed 
under identical quality control and normalization param-
eters as the discovery dataset to prevent technical biases. 
EcoTyper then generated a coefficient matrix from the 
gene expression matrix, representing each cell state as a 
weight. A permutation test was conducted to statistically 
evaluate the recovery of each cell state in the validation 
cohort, with statistical significance determined using a 
z-score threshold of 1.65.

By incorporating rigorous data preprocessing and qual-
ity control measures at each step, we ensured the robust-
ness and reproducibility of EcoTyper-based cell state and 
ecotype identification in HNSC.

Assessment of the rationality of cell state clustering
To evaluate the rationality of the cell state subgroup clus-
tering, we conducted two complementary analyses using 
the R packages ROGUE and scSHC. First, ROGUE was 
employed to assess the purity of the cell state subgroups. 
For each sample, the ROGUE index for every cell state 
was calculated and then integrated based on cell type. 
A bar chart displaying these values across different cell 
states was generated to visually illustrate the clustering 
purity within each cell type. In addition, the scSHC pack-
age was used to further validate the clustering results. 
Specifically, the testClusters function was applied to 
examine whether the identified subgroups were over-
clustered. The consistency between the clustering results 
from testClusters and the original clustering configura-
tion confirmed the statistical significance and overall 
validity of the cell state subgroup clustering.

ST visualization and colocalization analysis
The abundance of cell states and ecotypes within each 
spatial barcode spot was estimated by inferring the rela-
tive abundance of HNSC cell states in the Visium array 
using EcoTyper. For each spot, the most abundant cell 
state of each cell type was normalized to 1, with all other 
states set to 0. To standardize ecotype abundance, the 
99th percentile of all ecotype values was normalized to 1.

Colocalization of cell states was evaluated by calculat-
ing the Spearman correlation coefficient matrix for cell 
state abundance within each spot. Additionally, spatial 

clustering of ecotypes was analyzed using Moran’s I sta-
tistic [27], which assessed the relative abundance of SEs 
in each spot in relation to their immediate neighboring 
spots.

Genomic mutation analysis
TCGA mutation data for HNSC were used to select the 
18 most frequently mutated genes. Tumor barcodes were 
standardized and mutation data reshaped into a gene-
by-sample matrix (with multiple mutation types consoli-
dated as “Multi_Hit”), followed by integration of clinical 
and ecotype data. An OncoPrint generated via the Com-
plexHeatmap package visualized the mutational land-
scapes of the E7 and E8 ecotypes.

Cell–cell interaction network
To explore potential intercellular crosstalk within each 
ecosystem, we employed the R package CellChat fol-
lowing its standard pipeline to infer the distribution 
and expression of ligand-receptor pairs. For the cell–cell 
communication analysis, we utilized all components of 
the CellChatDB except for the "Non-protein Signaling" 
category. Additionally, any interactions involving fewer 
than 10 cells were filtered out.

Treatment sensitivity analysis
For immunotherapy sensitivity analysis, we collected 
three established immunotherapy sensitivity signatures 
(IFN-γ6, T cell-inflamed GEP, and TLS [23–25]) along 
with immune-related markers (CD8A, MS4A1, FOXP3, 
CD274, CD163) and exhaustion/activation-related mark-
ers (PDCD1, CTLA4, IFNG) previously used to assess the 
utility of Immunoscore in melanoma [26]. These markers 
were log2-transformed and scaled to unit variance across 
pre-treatment samples in each dataset.

All immunotherapy and chemotherapy gene expression 
datasets were TPM-normalized prior to analysis, and 
only RNA-seq profiles from pre-treatment tumors were 
included. To mitigate potential batch effects, each indi-
cator was independently estimated within each dataset. 
We applied univariate Cox proportional hazards regres-
sion to evaluate each indicator’s association with overall 
survival, extracting the z-score for each. Additionally, the 
binary association between each indicator and treatment 
response was assessed using a two-sided Wilcoxon test, 
with z-scores calculated from the Wilcoxon p-values. 
Finally, the resulting z-score rankings were averaged 
across outcome associations and treatment types to gen-
erate a final ranking for each indicator.

CE network visualization
The igraph package was used to construct a weighted, 
undirected network representing the relationships 



Page 14 of 17Xiao et al. Journal of Translational Medicine          (2025) 23:254 

between cell states within each CE. The edge weights 
were determined by the Jaccard index between cell 
states, reflecting the degree of overlap between them. 
The network layout was generated using the layout_
with_fr function, which positions the nodes based on the 
Fruchterman-Reingold force-directed algorithm.

Statistics and reproducibility
To evaluate the clinical relevance of cell states and 
ecotypes in HNSC, we performed survival analyses using 
the ‘survfit’ function from the ‘survival’ package. Cut-
off points for high and low abundance were determined 
with the ‘surv_cutpoint’ function from the ‘survminer’ 
package, and statistical significance was assessed using 
two-sided log-rank tests. Univariate Cox proportional 
hazards models were employed to identify risk and pro-
tective cell states and ecotypes, with the c-index values 
calculated via the ‘coxph’ function in the ‘survival’ pack-
age. The Wilcoxon rank-sum test was applied to compare 
the distributions of unpaired and paired samples. Corre-
lations between variables were analyzed using the Spear-
man correlation coefficient. Statistical significance was 
defined as a p-value less than 0.05. All statistical analyses 
were conducted using Prism (GraphPad Software) or R 
within the RStudio environment.

Discussion
In this study, we applied the EcoTyper machine learning 
framework to identify and characterize cell states and 
multicellular communities (ecotypes) in HNSC. Unlike 
previous pan-cancer classifications of tumor cell states 
and ecotypes, our approach enables the identification of 
HNSC-specific cell states and ecotypes [13, 20]. By ana-
lyzing the various cell states within the tumor microen-
vironment and their community structures, we provided 
a comprehensive characterization of the heterogeneity 
within the HNSC tumor microenvironment. Analyses 
across independent datasets revealed significant asso-
ciations between specific cell states, tumor ecotypes, and 
patient outcomes, underscoring the critical role of tumor 
microenvironment heterogeneity in HNSC prognosis and 
treatment response. This study offers a novel perspective 
for precision medicine in HNSC, extending beyond con-
ventional TNM staging.

To systematically characterize the HNSC tumor micro-
environment, we integrated primary HNSC single-cell 
sequencing data from multiple cohorts to create a dis-
covery cohort for the ecotype framework [28]. We fur-
ther validated the identified cell states and ecotypes using 
metastatic HNSC single-cell sequencing data, spatial 

transcriptomics samples, and single-cell sequencing data 
from other cancer types. The results showed that most 
cell states and ecotypes were reproducible and were 
applicable to other cancers, demonstrating the robust-
ness of the ecotype-based classification.

Among the identified cell states, several "key" states 
were strongly associated with patient prognosis [29–33]. 
Notably, across multiple cohorts, a high abundance of 
SPP1 + M2-like macrophages and ACTA2 + fibroblast 
emerged as the most significant factors associated with 
poor prognosis in HNSC patients. We further validated 
the association between ACTA2 + fibroblast abundance 
and prognosis in our own TMA cohort, confirming that a 
higher abundance of ACTA2 + fibroblast correlated with 
worse outcomes. These findings suggest that the abun-
dance of fibroblast in the tumor microenvironment may 
be a critical determinant of HNSC prognosis.

Conversely, patients with a higher abundance of 
ATPIF1 + ATP5G1 + plasma cell, which are related to 
mitochondrial metabolism, has significantly better out-
comes. ATPIF1 and ATP5G1 play key roles in mito-
chondrial function-ATP5G1, a component of the ATP 
synthase complex, drives ATP production [34], while 
ATPIF1 protects mitochondrial function under hypoxic 
conditions by inhibiting ATP synthase activity [35]. The 
synergistic effects of these proteins may enhance mito-
chondrial function in plasma cells, promoting their 
survival and immune activity within the tumor microen-
vironment [36], ultimately leading to a stronger immune 
response and improved patient prognosis.

Since each tumor ecotype integrates multiple cell state 
contributions, we hypothesize that ecotype analysis 
could enhance clinical outcome prediction. Indeed, we 
observed a strong correlation between tumor ecotypes 
and patient prognosis. For instance, the E7 ecotype, pre-
dominantly composed of classical dendritic cells (cDC1) 
and natural killer T (NKT) cells, was associated with 
favorable outcomes. Our analysis demonstrated that the 
prognostic accuracy of the E7 ecotype was compara-
ble to, and in some instances surpassed, that of existing 
immunotherapy predictors.

Compared to previous pan-cancer ecotype classi-
fications, our HNSC-specific ecotypes demonstrated 
superior prognostic and predictive capabilities. Unlike 
general classifications that broadly group tumors based 
on molecular and cellular features, our ecotype frame-
work captures tumor-specific cellular states and eco-
logical niches in HNSC. This fine-grained classification 
allows for a more precise stratification of HNSC based 
on cellular compositions, providing better prognostic 
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insights. Notably, E7 and E8 ecotypes outperformed CE1 
and CE10 in predicting patient outcomes across multiple 
cohorts (Fig. 5E), highlighting the enhanced accuracy of 
our classification.

These findings suggest that detailed characterization 
of the tumor microenvironment based solely on ecotype 
features could provide accurate predictions of patient 
responses to immunotherapy, underscoring the potential 
of the ecotype framework in precision oncology.

In contrast, the E8 ecotype is primarily composed of 
TGFBI + fibroblast and TGFBI + macrophages, and is 
strongly associated with poor prognosis. TGFBI plays a 
pivotal role in the tumor microenvironment, particu-
larly by activating TGFBI + fibroblast and remodeling the 
extracellular matrix, thereby facilitating tumor cell inva-
sion and migration [37–39]. Additionally, TGFBI + mac-
rophages contribute to immunosuppression by creating 
a microenvironment that inhibits T cell activation and 
function, thereby promoting tumor growth [40–42]. We 
observed that patients with the E8 ecotype exhibited poor 
responses to immunotherapy, likely due to the combined 
immunosuppressive effects of TGFBI + fibroblast and 
TGFBI + macrophages within the tumor microenviron-
ment. The high expression of these cells may suppress T 
cell-mediated anti-tumor activity, thereby compromising 
the effectiveness of immunotherapy. This finding high-
lights the critical inhibitory role of TGFBI + fibroblast 
and TGFBI + macrophages in shaping the tumor immune 
microenvironment, particularly in the E8 ecotype, where 
their elevated expression could significantly impact the 
patient’s immune response. Targeted therapeutic strate-
gies aimed at TGFBI + fibroblast, TGFBI + macrophages, 
or their associated signaling pathways may help coun-
teract this immunosuppressive environment, potentially 
improving the response to immunotherapy in these 
patients. These insights further underscore the value of 
ecotype analysis as a guiding tool for personalized treat-
ment approaches.

In addition, we conducted an in-depth analysis of the 
relationship between cell states, ecotypes, and chemo-
therapy sensitivity in HNSC. The results revealed that 
multiple cell states within the E1 ecotype were signifi-
cantly associated with better chemotherapy response. As 
a combination of cell states, the E1 ecotype outperformed 
the most robust predictor of favorable chemotherapy 
outcomes in patients.

Moreover, compared to the previous pan-cancer 
ecotype classification, the predictive efficacy of E1 and 
fibroblast (S02) for chemotherapy sensitivity was nota-
bly stronger, suggesting the superior ability of this clas-
sification in guiding treatment decisions (Fig. 6A). Unlike 
pan-cancer classifications, which provide broad tumor 

stratifications, our study demonstrates that tumor-spe-
cific ecotypes are more effective in identifying chemo-
therapy-sensitive and chemotherapy-resistant subgroups. 
This refined classification could thus facilitate personal-
ized treatment selection, improving therapeutic out-
comes for HNSC patients.

In contrast, ACTA2 + fibroblast, as a distinct and inde-
pendent cell state, surpassed all other individual cell 
states and their combinations to become a core marker 
of chemotherapy resistance. This cell state likely under-
mines chemotherapy efficacy by altering the tumor 
microenvironment, enhancing tumor cell survival, and 
limiting drug penetration [43, 44].

Notably, among all cell states and ecotypes, 
ACTA2 + fibroblast exhibit the strongest predictive 
capacity for chemotherapy resistance, underscoring 
their pivotal role in this process. Recent studies have also 
shown that TSPAN8 + fibroblast contribute to chemo-
therapy resistance in breast cancer [45]. Consistent with 
these findings, our study demonstrates a significant asso-
ciation between the abundance of fibroblast populations 
and chemotherapy resistance in patients with HNSC, fur-
ther linking it to poor prognosis. These results highlight 
the potential of fibroblast as a key markers of chemother-
apy resistance and adverse clinical outcomes in HNSC.

However, while our study provides valuable insights 
into the HNSC tumor microenvironment, there are 
several areas that could be further explored. Future 
research could integrate multi-omics data (e.g., proteom-
ics, metabolomics) to deepen our understanding of the 
molecular mechanisms underlying tumor progression 
and immune evasion. Additionally, applying advanced 
machine learning techniques, such as deep learning 
or multi-task learning, could refine our cell state and 
ecotype classifications and reveal novel biomarkers for 
prognosis and treatment response. Lastly, incorporat-
ing longitudinal data would enable the study of dynamic 
changes in the tumor microenvironment over the course 
of treatment, offering more predictive power for patient 
monitoring and personalized therapy.

In summary, we provided a comprehensive charac-
terization of the tumor microenvironment heterogene-
ity in HNSC by analyzing large-scale bulk and single-cell 
transcriptome data. Our findings offer new insights for 
predicting prognosis and evaluating potential treatment 
responses, contributing to the advancement of personal-
ized cancer treatment.
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