
Zhou ﻿Journal of Translational Medicine          (2025) 23:383  
https://doi.org/10.1186/s12967-025-06402-9

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of 
Translational Medicine

Construction of enhanced MRI‑based 
radiomics models using machine learning 
algorithms for non‑invasive prediction of IL7R 
expression in high‑grade gliomas and its 
prognostic value in clinical practice
Jie Zhou1*    

Abstract 

Background  High-grade gliomas are among the most aggressive and deadly brain tumors, highlighting the criti-
cal need for improved prognostic markers and predictive models. Recent studies have identified the expression 
of IL7R as a significant risk factor that affects the prognosis of patients diagnosed with high-grade gliomas (HGG). This 
research focuses on investigating the prognostic significance of Interleukin 7 Receptor (IL7R) expression and aims 
to develop a noninvasive predictive model based on radiomics for HGG.

Methods  We conducted an analysis using data from The Cancer Genome Atlas (TCGA) and The Cancer Imaging 
Archive (TCIA), focusing on a group of 310 patients diagnosed with high-grade gliomas. To evaluate prognosis, we 
applied both univariate and multivariate Cox regression analyses alongside Kaplan–Meier survival analysis. Radiom-
ics features were extracted from specific regions of interest, which were outlined by two physicians using 3D Slicer 
software. For selecting the most relevant features, we utilized the Minimum Redundancy Maximum Relevance 
(mRMR) and Recursive Feature Elimination (RFE) algorithms. Following this, we developed and assessed Support Vec-
tor Machine (SVM) and Logistic Regression (LR) models, measuring their performance through various metrics such 
as accuracy, specificity, sensitivity, positive predictive value, calibration curves, the Hosmer–Lemeshow goodness-of-fit 
test, decision curve analysis (DCA), and Kaplan–Meier survival analysis.

Results  The survival analysis encompassed a total of 310 patients diagnosed with high-grade glioma, sourced 
from the TCGA database. Patients were stratified into high and low expression groups based on the levels of IL7R 
expression. Kaplan–Meier survival curves and Cox regression analysis revealed that an increase in IL7R expression 
correlated with a decline in overall survival (OS). The median Intraclass Correlation Coefficient (ICC) for the assessed 
radiomic features was determined to be 0.869, with 93 features exhibiting an ICC of 0.75 or greater. Utilizing 
the mRMR and RFE methodologies led to the identification of a final set comprising eight features. The Support Vector 
Machine (SVM) model recorded an Area Under the Curve (AUC) value of 0.805, whereas the AUC derived from five-
fold cross-validation was noted to be 0.768. Conversely, the Logistic Regression (LR) model produced an AUC of 0.85, 
with an internal fivefold cross-validation AUC of 0.779, indicating a more robust predictive capability. We developed 
Support Vector Machine (SVM) and Logistic Regression (LR) models, with the LR model demonstrating a more robust 
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predictive capability. Further Kaplan–Meier analysis underscored a significant association between elevated risk 
scores from the LR model and OS malignancy, with a P value of less than 0.001. GSVA analysis showed the enrichment 
pathway of KEGG and Hallmark genes in the high RS group. Moreover, expression levels of the LOX gene and the infil-
tration of M0 macrophages were significantly heightened in the high-risk score group, alongside an increase 
in tumor mutation burden (TMB). Interestingly, the mutation frequencies of TP53 and PIK3CA were found to be lower 
in the high-risk score group when compared to their low-risk counterparts.

Conclusion  IL7R expression is a vital prognostic marker in high-grade gliomas. The radiomics-based LR models dem-
onstrate strong predictive capabilities for patient outcomes. Future investigations should aim to incorporate these 
insights into clinical practice to enhance personalized treatment approaches for patients with high-grade glioma.

Keywords  Radiomics, High-grade glioma, IL7R, Prognosis

Introduction
Glioma is the most common malignant cancer of the cen-
tral nervous system, and its treatment is one of the most 
challenging problems in neuro-oncology [1, 2] Currently, 
the treatments for glioma include surgery, radiotherapy, 
chemotherapy and targeted therapy, etc. However, due 
to the high difficulty of its treatment, the rate of disabil-
ity and death is also very high [3, 4]. The World Health 
Organization (WHO) classification of central nervous 
system tumours classifies [5] gliomas into grades I-IV, of 
which grades I-II are low-grade gliomas with low malig-
nancy and relatively good prognosis, while grades III-IV 
are high-grade gliomas (HGG) with high malignancy and 
poor prognosis. Despite advances in surgical techniques, 
radiotherapy, and chemotherapy, the median survival for 
patients with GBM remains approximately 15  months, 
and the 5-year survival rate is less than 10% [6]. The clas-
sical prognostic indicators for gliomas, including clin-
icopathological features, Ki67, and other indicators, and 
CT, MRI and other imaging methods, can no longer meet 
the clinical needs of precision medicine [7]; new prog-
nostic markers need to be further explored to stratify 
patients’ prognosis for individualized medical treatment 
and provide new indicators for individualized precision 
treatment.

The IL7R gene encodes a protein that is a subunit 
of the IL-7 receptor, a receptor protein on cell mem-
branes. IL-7 is a member of the cytokine family with 
four antiparallel helices that bind type I cytokine recep-
tors. It is produced by stromal cells and is required for 
lymphocyte development and homeostatic survival [8] 
IL-7 and IL-7R promote cell survival and inhibit apop-
tosis primarily through activation of the JAK, STAT5, 
and PI3K-AKT-mediated signalling pathways [9]. The 
IL7R gene plays a key role in the development and 
function of the immune system. The IL7R gene plays 
a key role in the development and function of the 
immune system, and mutations or abnormalities in the 
IL7R gene may be associated with the occurrence and 
development of a number of immune-related diseases, 

such as autoimmune diseases and immunodeficiency 
diseases [10, 11]. Recent studies have demonstrated 
the high efficacy of IL-7/IL-7 receptor (IL-7R)-based 
immunotherapy against various malignancies, both 
in animal models and in humans. In recent years, the 
progression-free survival and overall survival of gli-
oma patients have been significantly increased by the 
introduction of genetically modified T-cells (CAR)-T 
cells expressing C7R and long-acting IL7 agonists [12]. 
Therefore, the study of the IL7R gene contributes to an 
in-depth understanding of the regulatory mechanisms 
of the immune system as well as the mechanisms of 
related diseases. In the context of HGGs, IL7R expres-
sion may play a role in tumor growth and immune 
evasion, making it a promising target for therapeutic 
intervention.

Currently, IL7R expression level can only be detected 
by invasive methods such as peripheral blood cytokine 
assays, fresh tissue-based mRNA or protein level assays, 
and paraffin tissue-based assays, all of which have sig-
nificant limitations including high costs, operator 
dependency, and inability to reflect the tumor paren-
chyma accurately MR Imaging is the most accessible 
image data necessary for clinical diagnosis Artificial 
intelligence is gradually being applied to the imaging 
profession, causing a huge change in imaging. Radiom-
ics data is a kind of high-throughput radiomic feature 
extraction, which can obtain a large number of image 
parameters, and is a non-invasive, dynamic detection 
and quantitative response to the characteristics of the 
tumour [13]. Radiomics has been widely used in clinical 
practice, and previous studies have shown that Radiom-
ics can be used for early diagnosis and staging of HGG, 
as well as for assessing tumour heterogeneity and the 
microenvironment.

Based on the above factors, the present study inno-
vatively proposed to non-invasively predict the mRNA 
expression of IL7R in HGG tissues by developing a 
radiomics-based predictive model, and assessed the 
correlation between the constructed radiomics model 
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and the related genes and prognosis; at the same time, 
we also integrated bioinformatical analyses to explore 
the potential molecular mechanisms behind the expres-
sion of IL7R and its association with the immune 
microenvironment.

Materials and methods
Patients and datasets
Data regarding high-grade gliomas were sourced from 
the The Cancer Genome Atlas (TCGA, https://​por-
tal.​gdc.​cancer.​gov/) and The Cancer Imaging Archive 
(TCIA, http://​www.​cance​rimag​ingar​chive.​net/). This 
study concentrated on patients with pathologically con-
firmed grade III and IV gliomas who were receiving their 
first treatment, specifically focusing on primary solid 
tumors that had undergone RNA sequencing (RNA-seq). 
Inclusion criteria required initial diagnoses of grade III 
and IV gliomas, with a particular emphasis on primary 
solid tumors analyzed through RNA-seq. Additionally, 
the study mandated the availability of comprehensive 
clinical data and high-resolution MRI-enhanced imag-
ing for each patient. Exclusion criteria were established 
to eliminate cases lacking complete clinical or survival 
information, specifically excluding individuals who sur-
vived for less than 1  month after their diagnosis. Addi-
tionally, samples characterized by inadequate quality of 
imaging were omitted from the analysis. A total of 310 
patients with high-grade glioma in the TCGA database 
were included in the survival analysis. Number of sam-
ples, inclusion, and exclusion criteria for TCGA and 
TCIA data, add to the attached Table  S1. Our research 
utilizes patient data from ethically sanctioned databases 
that are publicly accessible for research endeavors. Given 
the open-source nature of the data, our study is devoid of 
ethical dilemmas and potential conflicts of interest.

The R package ‘survminer’ (v0.4.9) https://​github.​com/​
kassa​mbara/​survm​inerw​as employed, utilizing a cutoff 
value of cutoff = 0.5547 predicated on IL7R expression 
[14]. Transcriptomic sequencing data, along with clini-
cal and follow-up information, were procured from the 
TCGA database, while medical imaging was acquired 
from the TCIA database.

Calculation of KM curves, median survival times, 
and point‑in‑time survival rates
Kaplan–Meier survival curves were employed to illus-
trate variations in survival rates across different cohorts, 
with the median survival time denoting the duration cor-
responding to a survival rate of 50%. To assess the signifi-
cance of survival rate differences among the groups, the 
log-rank test was utilized.

Cox regression
Cox regression analyses were conducted utilizing the R 
packages “‘survival’ (v3.2.13) https://​github.​com/​thern​
eau/​survi​val” and “forestplot’ (v2.0.1) https://​github.​
com/​LSYS/​fores​tplot” [15]. The Cox proportional haz-
ards model facilitates the examination of the relationship 
between one or several predictors and the incidence of 
survival outcomes. A univariate Cox regression approach 
was employed to evaluate the correlation of various fac-
tors impacting overall survival (OS), whereas a multifac-
torial Cox regression analysis was performed to ascertain 
the association of specific factors with survival outcomes. 
This methodology primarily aims to determine whether a 
given factor acts as an independent influence on OS and 
to investigate the roles of various contributing factors.

Subgroup analyses and interaction tests
Univariate Cox regression was also utilized to carry out 
exploratory subgroup analyses, assessing the impact 
of IL7R expression (comparing high expression versus 
low expression groups) on the prognostic outcomes of 
patients across different covariate subgroups. The inter-
action between IL7R expression and other covariates was 
further evaluated using the likelihood ratio test.

Radiomics
Image processing and outlining
The biometric data from The Cancer Genome Atlas 
(TCGA) were integrated with imaging data from The 
Cancer Imaging Archive (TCIA), yielding a sample size 
of n = 82. The data underwent normalization to derive 
radiomic features, comprising 107 features extracted via 
the pyradiomics’ (v3.0.1) https://​github.​com/​AIM-​Harva​
rd/​pyrad​iomics package. The entire tumor region was 
delineated manually using 3D Slicer software (version 
4.10.2), focusing on gliomas as visualized in enhanced 
T1-weighted MRI scans, which included both enhanced 
and non-enhanced tumor areas [16]. Additionally, twenty 
samples were randomly selected for outlining by a sepa-
rate physician. The complete workflow for the radiomics 
analysis is depicted in Fig. 1.

Intraclass correlation coefficient (ICC)
The intraclass correlation coefficient (ICC) was employed 
to assess the consistency of histological features extracted 
from volumes of interest (VOIs) based on the sketches 
provided by two physicians. After one physician com-
pleted the sketching of all cases, another physician ran-
domly selected 20 samples through a “random number 
table method” for histological feature extraction. Gener-
ally, an ICC value of 0.75 or higher is indicative of excel-
lent agreement, values ranging from 0.51 to 0.74 suggest 
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moderate agreement, and values below 0.50 indicate poor 
agreement. Features exhibiting ICC values above 0.75 
were subsequently filtered for further analysis using the R 
package “‘irr’ (v0.84.1) https://​github.​com/​visinf/​irr” [17].

Feature selection
The mRMR (Maximum Relevance Minimum Redun-
dancy) algorithm was employed to identify 30 relevant 
features, followed by the application of the RFE (Recur-
sive Feature Elimination) algorithm to refine the selec-
tion to the most optimal subset of features. The mRMR 
method assesses not only the dependence between each 
feature and the target variable but also the inter-cor-
relation among the features themselves. This approach 
utilizes mutual information as a metric. In the context 
of mRMR, the relevance of a feature subset to a particu-
lar category is determined by averaging the information 
gain of individual features concerning that category. 
Conversely, redundancy among features is quantified by 
aggregating the mutual information values between pairs 
of features and normalizing this sum by the square of the 
total number of features in the subset.

RFE operates by ranking the predictors prior to model 
development and systematically removing those deemed 
less significant. This iterative process is designed to iden-
tify a specific group of predictors that can effectively 

enhance the model’s accuracy. The approach consists of 
repeatedly training the model, removing ‘n’ features that 
are deemed to have low importance after each round, 
and then reevaluating the significance of the features 
that remain. This cycle persists until the optimal subset 
of features is determined. Supplementary Documents1: 
Detailed criteria for selecting the eight radiomics features 
and data preprocessing steps, including normalization 
and standardization of radiomics features.

Imaging histological model selection and construction
The Support Vector Machine (SVM) algorithm utilizes 
support vectors to define high-dimensional hyperplanes 
that act as decision boundaries. In this study, we imple-
mented the SVM algorithm using the “‘caret’ (v6.0.93) 
https://​github.​com/​topepo/​caret/” package in R to model 
the chosen image genomics features, which enabled us to 
predict gene expression levels effectively.

The logistic regression (LR) model, grounded in the 
principles of linear regression, employs a composite sig-
moid function and is widely used for binary classification 
tasks., The formula is g(z) = y(x) = 1

1+e−ω
T x

 . In this 
study, the logistic regression algorithm was applied to 
analyze the histological features of filtered images. Using 
the “‘stats’ (v4.1.2) https://​github.​com/​exelb​an/​stats” 
package in R, we constructed a binary classification 

Fig. 1  Image omics flow chart
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model designed to predict gene expression based on 
these features.

The evaluation of the models involved several met-
rics, such as accuracy (ACC), specificity (SPE), sensitiv-
ity (SEN), positive predictive value (PPV), and negative 
predictive value (NPV). To assess the calibration of the 
radiomics prediction model, calibration curves were gen-
erated, and the Hosmer–Lemeshow goodness-of-fit test 
was conducted. Additionally, the clinical utility of the 
radiomics prediction model was demonstrated through 
decision curve analysis (DCA).

Clinical prognosis
Model predictions and GSVA enrichment analysis of high 
and low subgroups
The Radiomics score (RS) for the samples was derived 
from the radiomics model, subsequently categorizing the 
samples into dichotomous variables of Low and High. 
Expression matrices from 82 patients diagnosed with 
high-grade gliomas within The Cancer Genome Atlas 
(TCGA) were utilized to compute pathway enrichment 
scores for both KEGG pathway gene sets and Hallmark 
gene sets in each sample through Gene Set Variation 
Analysis (‘GSVA’ (v1.42.0) https://​github.​com/​rcast​elo/​
GSVA). A differential analysis was conducted employ-
ing the R package “‘limma’ (v3.50.0) https://​github.​com/​
cran/​limma” to compare the RS high and low groups, 
with the top 30 pathways visualized using a threshold of 
|t|= 1. The threshold of |t|= 1 was chosen to identify the 
top 30 pathways based on effect size rather than statisti-
cal significance (P value or FDR). This approach was used 
to highlight pathways with the most substantial changes 
in expression, regardless of multiple testing corrections. 
Specifically, 186 pathways were analyzed within the 
KEGG pathway gene sets, and 50 pathways were assessed 
in the Hallmark gene sets enrichment analysis.

Differential analysis of gene expression linked 
to epithelial‑mesenchymal transition
A total of 200 genes associated with the EPITHELIAL_
MESENCHYMAL_TRANSITION pathway from the 
Hallmark gene set were compiled. The Wilcoxon test was 
employed to evaluate the expression differences of these 
200 genes pertinent to epithelial-mesenchymal transition 
between the RS high and low groups, with statistical sig-
nificance established at P < 0.05.

Differential analysis of immune cell abundance
Gene expression matrices from high-grade glioma patient 
samples were submitted to the CIBERSORTx database 
(https://​ciber​sortx.​stanf​ord.​edu/) to ascertain immune 
cell infiltration for each sample. For CIBERSORTx, no 
specific cut-off was applied; the tool provides relative 

proportions of immune cell infiltration. The disparities in 
immune cell infiltration levels between the RS high and 
low expression groups were analyzed using the Wilcoxon 
rank sum test.

Analysis of tumor mutational load (TMB)
Tumor mutational burden (TMB), defined as the quantity 
of somatic mutations per megabase of genomic sequence, 
serves as a potential predictive biomarker for identifying 
cancer patients who are likely to benefit from immune 
checkpoint inhibitors. Mutation data in MAF format 
were retrieved from the TCGA database (https://​por-
tal.​gdc.​cancer.​gov/) for high-grade glioma samples. For 
TMB, the cut-off was determined based on the median 
value of mutations per megabase (mut/Mb) across the 
cohor. The TMB for these samples was computed using 
the maftools package, and differences in TMB between 
the RS high and low subgroups were assessed utilizing 
the Wilcoxon rank sum test.

Model prediction outcomes: analysis of RS mutations 
among high and low subgroups
Mutation information pertaining to patients with high-
grade gliomas was retrieved from the TCGA Data Por-
tal, yielding a sample size of 138 after intersecting with 
the radiomics dataset. The somatic variant data were 
formatted in Mutation Annotation Format (MAF) and 
subjected to analysis utilizing the R package ‘maftools’ 
(v2.10.0) https://​github.​com/​Poiso​nAlien/​mafto​ols. The 
visualization focused on the top 15 genes exhibiting the 
highest mutation frequencies. The mutation data were 
processed through the R package ‘maftools’ (v2.10.0) 
https://​github.​com/​Poiso​nAlien/​mafto​ols, and the visu-
alization depicted the 15 genes with the most prevalent 
mutations.

Results
Patient demographics
In this study, we analyzed data from 310 patients diag-
nosed with high-grade gliomas sourced from the TCGA 
database. These individuals were stratified into two 
groups based on IL7R expression levels: the high-expres-
sion cohort (n = 100) and the low-expression cohort 
(n = 210), utilizing a median value of 0.5547 as the thresh-
old for classification. The clinical characteristics of the 
subjects are detailed in. Notably, the age distribution 
revealed a statistically significant difference between the 
high- and low-expression groups of IL7R (P < 0.001).

Survival analysis
The study calculated the median survival durations and 
point-in-time survival rates, where the low-expression 
group exhibited a median survival time of 40.67 months, 

https://github.com/rcastelo/GSVA
https://github.com/rcastelo/GSVA
https://github.com/cran/limma
https://github.com/cran/limma
https://cibersortx.stanford.edu/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://github.com/PoisonAlien/maftools
https://github.com/PoisonAlien/maftools
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in contrast to 14.93  months for the high-expression 
group (Table 1). Kaplan–Meier survival curves indicated 
that elevated IL7R expression correlated with a decline 
in overall survival (OS), achieving a significant P value 
(P < 0.001) (Fig. 2a).

Cox regression analysis
Univariate analysis identified high IL7R expression 
as a statistically significant prognostic factor for OS 
(HR = 3.109, 95% CI 2.275–4.248, P < 0.001) (Fig.  2b). 
Further multifactorial analysis, after controlling for con-
founding variables, affirmed that high IL7R expression 

remained a significant risk factor for OS (HR = 1.512, 95% 
CI 1.066–2.144, P = 0.02) (Fig. 2c).

Subgroup analyses and interaction tests
Subgroup analysis revealed that in patients aged 60 years 
or younger, elevated IL7R levels constituted a risk fac-
tor for OS (HR = 3.121, 95% CI 1.951–4.994, P < 0.001), 
demonstrating statistical significance. Similarly, for 
patients older than 60  years, increased IL7R expression 
was also a risk factor for OS (HR = 2.076, 95% CI 1.333–
3.233, P = 0.001), which was statistically significant. The 
interaction test yielded a P value of 0.22, indicating no 

Table 1  Baseline data median survival time

Records n. max n. start Events *rmean *se (rmean) Median 0.95 LCL 0.95 UCL

IL7R = Low 210 210 210 96 54.17524943 5.840429297 40.66666667 33.7 51.56666667

IL7R = High 100 100 100 76 25.55730114 5.525365444 14.93333333 12.06666667 17.9

Fig. 2  IIL7R is overexpressed in HGG patients and is associated with poor prognosis. a Kaplan–Meier curves were used to analyze the overall 
survival of the TCGA–TCIA cohort grouped by IL7R expression. Univariate (a) and multivariate (b) analyses of the TCGA–TCIA cohort. c, d Subgroup 
analysis and interaction test, univariate table and univariate forest plot



Page 7 of 15Zhou ﻿Journal of Translational Medicine          (2025) 23:383 	

significant interaction between IL7R expression and the 
different age cohorts. Thus, it can be concluded that the 
influence of IL7R on OS was comparable across the two 
age subgroups (Fig. 2d).

Radiomics

1.	 Intraclass correlation coefficient (ICC): Two medical 
professionals delineated the Volume of Interest (VOI) 
and subsequently extracted radiomics features (refer 
to Fig. 3a). The median ICC for the imaging genomics 
features was calculated to be 0.869, with 93 features 
exhibiting an ICC value of 0.75 or greater, account-
ing for 86.9% of the total features (see Table 2). These 
features were included in the subsequent screening 
process. Further details can be found in the attached 
Table 2.

2.	 Feature extraction and screening: The minimum 
Redundancy Maximum Relevance (mRMR) algo-
rithm was employed to eliminate extraneous features, 
resulting in a selection of 30 features. Subsequently, 
the Recursive Feature Elimination (RFE) algorithm 
was utilized to refine the selection to the most opti-
mal features, ultimately identifying 8 significant fea-
tures (Fig. 3b).

3.	 Imaging group modeling and evaluation: The two 
algorithms yielded differing importance rankings 
for the 8 features. In the Support Vector Machine 
(SVM) algorithm, the significance of the features is 
illustrated in Fig.  4a. The radiomics model demon-
strated a robust predictive capability, as evidenced by 
the Receiver Operating Characteristic (ROC) curve, 

which indicated an Area Under the Curve (AUC) 
value of 0.805 (see Fig. 4b). The AUC for the fivefold 
cross-validation was determined to be 0.768 (Fig. 4c). 
The calibration curve and the Hosmer–Lemeshow 
goodness of fit test confirmed that the predicted 
probability of high gene expression by the radiomics 
model aligned well with the actual values (P > 0.05, 
see Fig.  4d). The Decision Curve Analysis (DCA) 
highlighted the model’s significant clinical utility 
(Fig.  4e). Furthermore, the comparative analysis of 
the SVM model revealed a statistically significant 
difference in the distribution of Rad_score between 
high and low gene expression groups (P < 0.001), with 
the group exhibiting elevated IL7R expression show-
ing a higher Rad_score (Fig. 4f ).

In the Logistic Regression (LR) model, the signifi-
cance of the features is depicted in Fig. 5a. The results 
of the regression coefficients related to the features 
in the LR model are shown in Table  3. The radiomics 
formula is expressed as: Radiomics = Feature * Cor-
responding Coefficient (Estimate) + Intercept (Esti-
mate) (refer to Table  3). The predictive efficacy of the 

Fig. 3  Picture processing. a Image sketching. b Feature selection

Table 2  Intraclass correlation efficient, ICC

ICC ≥ 0.75 0.5 ≤ ICCC < 0.75 ICC < 0.5 ICC_
Mean

ICC_Median

Percent-
age

0.869 0.103 0.028 0.9 0.97

Number 93 11 3 NA NA
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radiomics model was confirmed by the ROC curve, 
revealing an AUC value of 0.85 (Fig. 5b). The AUC val-
ues for the fivefold internal cross-validation were cal-
culated to be 0.779 (Fig. 5c). Similar to the SVM model, 
the calibration curve and Hosmer–Lemeshow good-
ness of fit test indicated that the predicted probability 

of high gene expression by the radiomics model was 
consistent with the actual values (P > 0.05, see Fig. 5d). 
The DCA also demonstrated the model’s clinical appli-
cability (Fig. 5e). The comparative analysis between the 
LR model groups showed a significant difference in the 
distribution of Rad_score (P < 0.001), with the group 

Fig. 4  a Plot of feature importance degree in SVM model. b SVMModel AUC value. c Fivefold cross-validation AUC. d Calibration curves and HL 
goodness of fit. e DCACurve. f SVMAnalysis of differences between model groups
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showing high IL7R expression displaying a higher Rad_
score (Fig. 5f ).

The Delong test was employed to assess the Area 
Under the Curve (AUC) values for the models under con-
sideration. The comparison of AUC values indicated no 
statistically significant difference between the Logistic 
Regression (LR) model’s AUC values in both the train-
ing set and the validation set (P = 0.073), suggesting an 
adequate model fit. Similarly, there was no significant 

difference observed in the AUC values of the Support 
Vector Machine (SVM) model between the training and 
validation sets (P = 0.885) (refer to Table 4), further sup-
porting the conclusion of a well-fitted model. It is noted 
that the AUC value for the LR imaging genomics model 
marginally surpassed that of the SVM imaging genom-
ics model. However, the Delong test confirmed that the 
differences between the two models were not statistically 
significant. Additionally, the AUC and other performance 

Fig. 5  a Plot of feature importance degree in LR model. b LR Model AUC value. c Fivefold cross-validation AUC. d Calibration curves and HL 
goodness of fit. e DCACurve. f LR Analysis of differences between model groups
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metrics of the LR imaging genomics model exhibited 
slight superiority over those of the SVM imaging genom-
ics model; hence, the output value (Rad_score) from the 

LR imaging genomics model was selected for further 
clinical analysis.

Model prediction: The imaging data from The Cancer 
Imaging Archive (TCIA) were integrated with the clinical 
data from The Cancer Genome Atlas (TCGA), yielding 
a total of 170 intersecting samples. The Radiomics score 
for these samples was computed using the LR Radiomics 
Model. This score was subsequently combined with the 
clinical data, and the cutoff value for the Radiomics score 
was determined utilizing the survminer v0.4.9 pack-
age to categorize the data into Low/High dichotomous 
variables (RS). Based on the RS expression with a cutoff 
value of 0.449, patients were classified into a high expres-
sion group (n = 69) and a low expression group (n = 101). 
The clinical characteristics of these patients are detailed 
in Table 5. A statistically significant difference (P < 0.001) 
was observed in the distribution of tumor pathological 
grading and IDH status between the high and low RS 
expression groups.

KM curve: Kaplan–Meier survival curves were gener-
ated using the ‘survminer’ (v0.4.9) https://​github.​com/​
kassa​mbara/​survm​inerp​ackage in R to illustrate the sur-
vival rate variations among different groups for each vari-
able. The median survival time, indicative of the duration 

Table 3  Regression coefficient of feature in LR model

Estimate

(Intercept) −1.017450318

original_ngtdm_Contrast 0.64299895

original_glcm_Idmn 3.787615188

original_firstorder_Kurtosis −0.407920908

original_glcm_Idn −5.01458914

original_glcm_MaximumProbability 0.698800646

original_glcm_ClusterShade −0.35539405

original_firstorder_Skewness 0.881224081

original_glszm_GrayLevelNonUniformityNormalized −0.441609203

Table 4  SVM, LR intermodel comparison

Train Vali

0.073424714 0.885646837

Table 5  TCIA–TCGA pooled data

Variables Total (n = 170) Low (n = 101) High (n = 69) P

Age, n (%) <0.001

 ~59 103 (61) 72 (71) 31 (45)

 60~ 67 (39) 29 (29) 38 (55)

Gender, n (%) 0.029

 Female 75 (44) 52 (51) 23 (33)

 Male 95 (56) 49 (49) 46 (67)

Radiotherapy, n (%) 0.681

 No 26 (15) 14 (14) 12 (17)

 Yes 144 (85) 87 (86) 57 (83)

Histologic_grade, n (%) <0.001

 III 54 (32) 50 (50) 4 (6)

 IV 116 (68) 51 (50) 65 (94)

IDH_status, n (%) <0.001

 Wildtype 128 (75) 61 (60) 67 (97)

 Mutant 42 (25) 40 (40) 2 (3)

Chr_1p_19q_codeletion, n (%) 0.002

 Non-codel 155 (91) 86 (85) 69 (100)

 Codel 15 (9) 15 (15) 0 (0)

Chemotherapy, n (%) 0.546

 No 32 (19) 17 (17) 15 (22)

 Yes 138 (81) 84 (83) 54 (78)

MGMT_promoter_status, n (%) <0.001

 Unmethylated/unknown 90 (53) 41 (41) 49 (71)

 Methylated 80 (47) 60 (59) 20 (29)

https://github.com/kassambara/survminerpackage
https://github.com/kassambara/survminerpackage
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corresponding to a survival rate of 50%, was found to be 
12.3 months for the high RS group and 26.8 months for 
the low RS group (Table  6). The Kaplan–Meier curves 
demonstrated a significant association between high RS 
and reduced overall survival (OS) (P < 0.001), as depicted 
in Fig. 6.

Model predictions: RS GSVA enrichment analysis 
between high and low subgroups
We performed an analytical comparison of the GSVA 
results between high and low RS subgroups in patients 
with high-grade gliomas. The GSVA enrichment analy-
sis revealed significant activation of cytokine—cytokine 
receptor interaction pathways in the high-risk group, 
suggesting a pro-inflammatory tumor microenvironment 
(Fig. 7a). Additionally, within the Hallmark gene set, the 
RS high subgroup displayed considerable enrichment in 
the L6_JAK_STAT3_SIGNALING pathway, as well as in 
signaling pathways associated with EPITHELIAL_MES-
ENCHYMAL_TRANSITION (Fig. 7b).

Differential analysis of gene expression associated 
with epithelial‑mesenchymal transition
To assess the differences in gene expression pertinent to 
epithelial-mesenchymal transition between high and low 
RS groups, we employed the Wilcoxon test. The analysis 
revealed that the expression of the LOX gene was mark-
edly elevated in the RS high expression group (P < 0.0001) 
(Fig.  7c). The differential EMT analysis highlighted the 

LOX gene’s role in promoting tumor invasiveness and 
metastasis.

Differential analysis of immune cell abundance
We investigated the variations in immune cell infiltra-
tion between the RS high and low expression groups. Our 
results indicated that the infiltration of M0 macrophages 
was significantly higher in the RS high expression group 
(P < 0.01) (Fig.  7d). The immune cell abundance analy-
sis showed increased M0 macrophage infiltration in the 
high-risk group, indicating a potential immunosuppres-
sive environment.

Tumor mutational load (TMB) distribution
The analysis of tumor mutational load (TMB) revealed 
a statistically significant difference between the RS high 
and low groups (P < 0.01), with the RS high group exhibit-
ing elevated TMB values (Fig. 7e). TMB analysis revealed 
higher mutation burden in the high-risk group, which 
may correlate with increased genomic instability.

Model prediction results: RS mutation analysis 
between high and low subgroups
Our mutation analysis indicated that Missense_Muta-
tion was the predominant mutation type, followed by 
Nonsense_Mutation and Frame_Shift_Del. Notably, the 
mutation rate of the TP53 gene was observed to be equal 
to or greater than 20% in both the RS high and low sub-
groups. Furthermore, the mutation rates of the TP53 and 
PIK3CA genes were found to be lower in the RS high 
group compared to the RS low group (Fig. 7f, g).

The COX regression analysis of RS in conjunction with 
Kaplan–Meier (KM) survival analysis suggests that the 
classification of RS holds significant clinical prognostic 
relevance.

Discussion
High-grade gliomas (HGGs) are a particularly aggressive 
type of brain tumor, known for their rapid growth and 
poor prognosis [18]. Despite notable progress in surgi-
cal techniques, radiation therapy, and chemotherapy, 
the overall survival rates for patients with HGG remain 
frustratingly low. The complexity of these tumors, char-
acterized by significant molecular and cellular diversity, 
makes treatment challenging and highlights the urgent 
need for new diagnostic and prognostic biomarkers. 

Table 6  Median survival time of TCIA–TCGA pooled data

Records n. max n. start Events *rmean *se (rmean) Median 0.95 LCL 0.95 UCL

RS = Low 101 101 101 64 39.62201795 5.142500211 26.8 21.26666667 37.36666667

RS = High 69 69 69 66 14.31145964 1.232942238 12.33333333 10.6 15.53333333

Fig. 6  TCIA–TCGA Kaplan–Meier survival curves
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Fig. 7  LR model prediction. GSVA enrichment analysis (a) was enriched in signaling pathways in KEGG gene set (b) is enriched in signaling 
pathways in the Hallmark gene set (c) and differential analysis of genes related to epithelial-mesenchymal transition (d). Analysis of the difference 
between immune cell abundance and immune cell abundance (e). Difference analysis with tumor mutation load (TMB). Gene mutation analysis (f). 
TP53gene mutation rate (g). TP53 and PIK3CA gene mutation rate. The annotation Multi_Hit indicates genes that are mutated multiple times in the 
same sample
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The World Health Organization (WHO) classification 
system underscores the importance of molecular and 
genetic factors, such as IDH mutations and the co-dele-
tion of chromosomes 1p/19q, which have been linked to 
patient outcomes [19]. Additionally, the tumor microen-
vironment and the immune response play crucial roles in 
tumor progression and the development of resistance to 
treatment, suggesting that a comprehensive approach is 
necessary to fully understand and effectively target these 
cancers [20, 21]. Among potential biomarkers, the inter-
leukin-7 receptor (IL7R) has gained attention for its role 
in immune regulation and tumor progression, indicating 
its promise in the ongoing search for effective treatment 
strategies.

Gaining insights into the expression patterns of IL7R 
and its influence on patient prognosis could help develop 
more personalized therapeutic strategies. The variabil-
ity in IL7R’s molecular expression levels, along with the 
lack of validated assessment tools, has led researchers 
to explore imaging modalities. Among these, radiom-
ics shows promise in predicting the mutational status of 
IL7R molecules, allowing for non-invasive evaluations 
that can guide individualized clinical decision-making.

In this study, we established a radiomics model lever-
aging enhanced MRI imaging through machine learn-
ing algorithms to non-invasively predict IL7R mRNA 
expression in HGG tissues. We integrated transcriptomic 
data sourced from the TCGA database alongside imag-
ing data from the TCIA database to examine the cor-
relation between the radiomics model, gene expression, 
and clinical outcomes [22]. Our analysis included sur-
vival data from 310 HGG patients, categorized by IL7R 
expression levels. The findings from both univariate and 
multivariate Cox regression analyses indicated a signifi-
cant association between IL7R expression and patient 
prognosis. Kaplan–Meier survival analysis further cor-
roborated that the median survival time for patients 
with high IL7R expression was 14.93 months, in contrast 
to 40.67  months for those in the low-expression group, 
suggesting that elevated IL7R levels correlate with dimin-
ished overall survival. This indicates the potential of IL7R 
as a prognostic marker. Additional bioinformatics analy-
ses were conducted to investigate the underlying molec-
ular mechanisms and the relationship between IL7R 
expression and the immune microenvironment, thereby 
providing a comprehensive understanding of these inter-
actions [23].

This study represents a significant advancement in 
the non-invasive prediction of interleukin-7 receptor 
(IL7R) mRNA expression in high-grade gliomas (HGG) 
by enhanced magnetic resonance imaging (MRI)-based 
radiomics models [24]. By integrating machine learning 
algorithms, particularly support vector machine (SVM) 

and logistic regression (LR) models, we developed a 
powerful prediction framework. Elevated IL7R expres-
sion was associated with decreased overall survival (OS), 
confirming the existing literature linking IL7R to immune 
responses, particularly in the context of tumor biology 
and T cell dynamics [25]. Previous studies have focused 
on the histopathological and molecular features of HGG 
[26, 27]. This study not only confirms the role of IL7R 
as a prognostic marker, but also integrates radiomics to 
enhance predictive modeling, filling a critical knowledge 
gap. It was demonstrated by Kaplan–Meier (KM) analysis 
and Cox regression modelling that high IL7R expression 
was significantly associated with poorer overall survival 
(OS) in patients with HGG. Immunotherapy with IL-7/
IL-7 receptor (IL-7R) has high efficacy in a wide range of 
malignant tumours and has been demonstrated in ani-
mal models and in humans. Pathophysiological role of 
IL-7R in gliomas that survival of glioma patients starts to 
improve significantly after immunotherapy [28].

Our research distinguishes itself by integrating radiom-
ics with bioinformatics to forecast IL7R expression and 
its clinical implications. Furthermore, this study repre-
sents the inaugural effort to authenticate these results 
employing non-invasive imaging methodologies. This 
pioneering strategy not only augments our comprehen-
sion of the molecular underpinnings of high-grade glio-
mas (HGG) but also offers a pragmatic tool for clinical 
decision-making.

By employing advanced radiological techniques along-
side sophisticated feature selection methods, specifically 
Minimum Redundancy Maximum Relevance (mRMR) 
and Recursive Feature Elimination (RFE), we successfully 
optimized a selection of radiological features to pinpoint 
the eight most significant ones for building our predic-
tive model. These selected features were then utilized to 
create prediction models using Support Vector Machine 
(SVM) and Logistic Regression (LR). Previous studies 
have shown that machine learning techniques, includ-
ing SVM and logistic regression, can greatly improve 
prognostic accuracy [29]. Our models were rigorously 
assessed using various metrics such as accuracy (ACC), 
specificity (SPE), sensitivity (SEN), and positive predic-
tive value. Notably, the logistic regression model demon-
strated impressive performance, achieving an area under 
the curve (AUC) of 0.85, indicating its potential for appli-
cation in clinical settings; consequently, we decided to 
adopt the LR model for further use.

Our study not only clarifies the prognostic importance 
of IL7R but also highlights significant biological pathways 
associated with increased IL7R expression, such as the 
cytokine-cytokine receptor interaction and the IL6-JAK-
STAT3 signaling pathways. These findings are consistent 
with earlier research that demonstrates IL7R’s influence 
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on immune responses and the tumor microenvironment 
[30]. Notably, the elevated expression of the LOX gene, 
along with a higher presence of M0 macrophages in the 
high-risk score group, supports the idea that IL7R may 
contribute to creating an immunosuppressive environ-
ment in gliomas. IL7R signaling contributes to immune 
evasion by promoting M0 macrophage polarization 
toward an immunosuppressive M2 phenotype, suppress-
ing cytotoxic T—cell activity, and enhancing tumor cell 
survival through JAK—STAT3 pathway activation. These 
mechanisms collectively foster an immunosuppressive 
niche that facilitates tumor growth and therapy resist-
ance. As a result, IL7R stands out as both a prognostic 
marker and a potential target for therapy. This under-
scores the need for further investigation into the thera-
peutic modulation of IL7R and its related pathways to 
enhance treatment outcomes for patients suffering from 
high-grade gliomas.

The prognostic significance of IL7R expression in 
high-grade gliomas is supported by its association with 
reduced overall survival and its role in promoting tumor 
aggressiveness through immune evasion and microenvi-
ronment remodeling.

Despite the encouraging results, it is crucial to acknowl-
edge certain limitations in our study. Although we had a 
considerable sample size of 82 individuals sourced from 
the TCGA and TCIA databases, this cross-sectional 
group may limit the generalizability of our findings. 
Furthermore, the retrospective nature of the study and 
reliance on publicly available datasets could introduce 
selection bias. Using a single threshold for IL7R expres-
sion (0.5547) might not fully capture the range of expres-
sion levels and their clinical implications. Future research 
should aim to validate our results in larger, multicenter 
prospective cohorts and explore the varying spectrum of 
IL7R expression more thoroughly. Additionally, while our 
radiomics model showed improved predictive accuracy, 
it requires further refinement and validation in diverse 
clinical settings to confirm its reliability and practical 
application in routine clinical practice.

Conclusion
In conclusion, our study underscores the promising role 
of radiomics in conjunction with machine learning algo-
rithms for predicting IL7R expression in high-grade glio-
mas (HGG) and its implications for prognosis. The results 
reveal a notable link between elevated IL7R expression 
and reduced overall survival rates, indicating that IL7R 
may serve as an important biomarker for patient strati-
fication and tailored treatment approaches. Neverthe-
less, to confirm these findings and enhance predictive 
models, future research should involve larger prospec-
tive cohorts and multi-institutional data. Furthermore, 

incorporating additional molecular and clinical factors 
could strengthen the reliability and clinical applicabil-
ity of radiomics-based methods, ultimately aiding in the 
better management and prognosis of patients with high-
grade gliomas. MRI radiomics models have the potential 
to non-invasively predict IL7R levels in high-grade glio-
mas, which are closely associated with clinical outcomes.
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